期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进YOLOv8的城市行车道路障碍物检测算法研究 被引量:3
1
作者 向雷 蒋文波 《电子测量技术》 北大核心 2025年第1期29-38,共10页
针对目前城市道路复杂环境下障碍物检测精度不足、检测速度慢、模型参数量大和小目标障碍物检测效果不佳的问题,提出一种改进的YOLOv8n轻量级城市行车道路障碍物检测算法。首先,制作MRObstacle城市道路障碍物目标检测数据集,扩展了障碍... 针对目前城市道路复杂环境下障碍物检测精度不足、检测速度慢、模型参数量大和小目标障碍物检测效果不佳的问题,提出一种改进的YOLOv8n轻量级城市行车道路障碍物检测算法。首先,制作MRObstacle城市道路障碍物目标检测数据集,扩展了障碍物检测种类与数量;其次,设计全新的SPS_C2f改进主干网络,降低网络参数量与提升检测速度,添加M_ECA注意力模块至网络的Neck部分,提升网络检测速度与特征表达能力;再次,融合BiFPN特征金字塔和添加小目标检测头,更好地捕捉小尺寸障碍物的特征;最后,使用可优化边界框宽度与高度值的损失函数MPDIoU,提升网络边界框回归性能。相比于原YOLOv8n算法,该算法的mAP0.5指标提升2.04%,达到97.12%;FPS值提升12.08 fps,达到107.45 fps;网络参数量减少10%,降低至2.73 MB。该算法在减少参数量的同时提高了检测精度和速度,可更好应用于城市行车道路障碍物检测任务。 展开更多
关键词 障碍物检测 YOLOv8 改进C2f模块 改进注意力机制 损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部