期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合音节和词条特征的藏文文本情感分类研究
1
作者 孟祥和 于洪志 《中文信息学报》 北大核心 2023年第2期80-86,共7页
将深度神经网络模型应用于藏文文本情感分类中,虽然取得不错的分类效果,但仍然存在因藏文评论文本长度较短引起的特征稀疏的问题,使得深度学习模型不能够提取到更为全面的藏文文本语义特征。该文提出一种以藏文音节和藏文词条同时作为... 将深度神经网络模型应用于藏文文本情感分类中,虽然取得不错的分类效果,但仍然存在因藏文评论文本长度较短引起的特征稀疏的问题,使得深度学习模型不能够提取到更为全面的藏文文本语义特征。该文提出一种以藏文音节和藏文词条同时作为文本基本表示对象,采用CNN、BiLSTM和Multi-Headed Self-Attention机制等深度学习模型完成对藏文评论文本情感分类的研究方法。实验首先对音节和词条进行向量化表示,然后分别采用多核卷积神经网络、BiLSTM和Multi-Headed Self-Attention机制获取藏文文本中多维度的内部特征,最后通过特征拼接,再经激活函数为Softmax的全连接神经网络完成文本情感分类。研究结果表明,在该文的实验测试语料集上,融合音节和词条特征模型的分类准确率要优于基于音节的模型和基于词条的模型。 展开更多
关键词 藏文文本 情感分类 藏文音节 深度神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部