期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Ceph分布式存储系统性能优化技术研究综述 被引量:24
1
作者 张晓 张思蒙 +2 位作者 石佳 董聪 李战怀 《计算机科学》 CSCD 北大核心 2021年第2期1-12,共12页
Ceph是一个统一的分布式存储系统,可同时提供块、文件和对象3种接口的存储服务。与传统的分布式存储系统不同,它采用了无中心节点的元数据管理方式,因此具有良好的扩展性和线性增长的性能。经过十余年的发展,Ceph已被广泛地应用于云计... Ceph是一个统一的分布式存储系统,可同时提供块、文件和对象3种接口的存储服务。与传统的分布式存储系统不同,它采用了无中心节点的元数据管理方式,因此具有良好的扩展性和线性增长的性能。经过十余年的发展,Ceph已被广泛地应用于云计算和大数据存储系统。作为云计算的底层平台,Ceph除了提供虚拟机的存储服务外,还可以直接提供对象存储服务和NAS文件服务。Ceph支撑着云计算系统中多种操作系统和应用的存储需求,它的性能对其上的虚拟机和应用有较大的影响,因此Ceph存储系统的性能优化一直是学术界和工业界的研究热点。文中首先介绍了Ceph的架构和特性;然后针对现有的性能优化技术,从对内部机制进行改进、面向新型硬件和基于应用的优化这3个方面进行了归纳和总结,综述了近年来Ceph存储和优化的相关研究;最后对该领域未来的工作进行了展望,以期为分布式存储系统性能优化的研究者提供有价值的参考。 展开更多
关键词 Ceph分布式存储系统 性能优化 非易失内存 固态硬盘 统一存储
在线阅读 下载PDF
融合引导注意力的中文长文本摘要生成
2
作者 郭哲 张智博 +2 位作者 周炜杰 樊养余 张艳宁 《电子学报》 CSCD 北大核心 2024年第12期3914-3930,共17页
当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利... 当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利于提取多粒度的语义信息.针对上述问题,本文提出了融合引导注意力的中文长文本摘要生成(Chinese Long text Summarization with Guided Attention,CLSGA)方法.首先,针对中文长文本摘要生成任务,利用抽取模型灵活抽取长文本中的核心词汇和语句,构建引导文本,用以指导生成模型在编码过程中将注意力集中于更重要的信息.其次,设计中文长文本词表,将文本结构长度由字统计改变至词组统计,有利于提取更加丰富的多粒度特征,进一步引入层次位置分解编码,高效扩展长文本的位置编码,加速网络收敛.最后,以局部注意力机制为骨干,同时结合引导注意力机制,以此有效捕捉长文本跨度下的重要信息,提高摘要生成的精度.在四个不同长度的公共中文摘要数据集LCSTS(大规模中文短文本摘要数据集)、CNewSum(大规模中国新闻摘要数据集)、NLPCC2017和SFZY2020上的实验结果表明:本文方法对于长文本摘要生成具有显著优势,能够有效提高ROUGE-1、ROUGE-2、ROUGE-L值. 展开更多
关键词 自然语言处理 中文长文本摘要生成 引导注意力 层次位置分解编码 局部注意力
在线阅读 下载PDF
基于自扩展深度置信网络的原油油膜绝对厚度反演研究 被引量:1
3
作者 姜宗辰 马毅 杨俊芳 《海洋科学》 CAS CSCD 北大核心 2021年第3期94-107,共14页
海上溢油事故危害海洋生态安全、人类健康与经济发展。开展基于遥感技术的海面溢油量的估算研究,对于保护海洋生态环境具有重要意义,而油膜厚度反演是溢油量估算的核心环节。本文通过搭建室外实验场景,模拟真实海面溢油环境,基于现场实... 海上溢油事故危害海洋生态安全、人类健康与经济发展。开展基于遥感技术的海面溢油量的估算研究,对于保护海洋生态环境具有重要意义,而油膜厚度反演是溢油量估算的核心环节。本文通过搭建室外实验场景,模拟真实海面溢油环境,基于现场实测高光谱遥感数据,开展海面溢油厚度反演研究。本文将深度学习与遥感技术融合,提出了基于自扩展深度置信网络的油膜厚度反演模型(oil thickness inversion generative adversarial and deep belief network,OG-DBN)。该模型由油膜光谱特征数据自扩展模块与油膜绝对厚度反演模块两部分组成。光谱特征数据自扩展模块能够基于实测高光谱遥感数据,自动筛选出光谱可分性较好的光谱特征区间,进而基于对抗生成网络(generativeadversarial network,GAN)进行样本扩展,增强模型的泛化性;油膜绝对厚度反演模块则是基于深度置信网络(deep belief network,DBN),深度挖掘不同厚度油膜光谱特征数据的光谱特性信息,精确反演油膜的绝对厚度。实验结果表明,本文提出的OG-DBN模型在可控实验条件下,原油油膜绝对厚度反演精度达到97.69%,决定系数R2为0.980,平均差控制在±0.06%;模型鲁棒性测试表明,该模型仍能保持较为稳定的反演精度,均高于93.33%,R2大于0.957以上,平均差在±0.6%以内。 展开更多
关键词 海洋遥感 原油油膜 绝对厚度 深度学习 深度置信网络 生成对抗网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部