期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
脉冲调制激光雷达水下成像系统 被引量:3
1
作者 徐国权 李广英 +6 位作者 万建伟 许可 董光焰 程光华 王兴 韩文杰 马燕新 《红外与激光工程》 EI CSCD 北大核心 2022年第3期264-271,共8页
针对水下目标探测应用场景,给出了相应的532 nm波长激光雷达系统参数,结合条纹管激光雷达和载波调制激光雷达的优点,设计研制了一套水下三维成像增程激光雷达原理样机。相对于常见的微波调制激光产生高频脉冲的方案,该原理样机采取调Q... 针对水下目标探测应用场景,给出了相应的532 nm波长激光雷达系统参数,结合条纹管激光雷达和载波调制激光雷达的优点,设计研制了一套水下三维成像增程激光雷达原理样机。相对于常见的微波调制激光产生高频脉冲的方案,该原理样机采取调Q技术压缩激光脉冲,再结合F-P腔的特性产生高频激光脉冲,具有峰值功率高和输出能量高的优点。实验结果表明,该原理样机在清水环境中成像距离优于20 m,能够捕捉到13 m处直径9 mm的目标细节;在浊水环境中的信号处理增程能力达到81.4%,相对距离分辨误差为0.01 m。所获得的实验结果为进一步提升水下激光雷达的成像距离和分辨率进而发展水下成像装备奠定了基础。 展开更多
关键词 高分辨率 水下成像 激光雷达 增程
在线阅读 下载PDF
基于特征气体加权的油浸式变压器故障预报 被引量:2
2
作者 朱建勇 凤冰霞 +1 位作者 杨辉 聂飞平 《控制工程》 CSCD 北大核心 2022年第10期1743-1751,共9页
电力变压器担负着电网中电能变换与传输任务,是电力系统安全可靠、经济优质运行的重要保障,减少和防止其故障发生对电网意义重大。首先,针对时序数据样本的相关性,为减少时间序列间隔与数据变化给预测模型带来的影响,通过分析气体浓度... 电力变压器担负着电网中电能变换与传输任务,是电力系统安全可靠、经济优质运行的重要保障,减少和防止其故障发生对电网意义重大。首先,针对时序数据样本的相关性,为减少时间序列间隔与数据变化给预测模型带来的影响,通过分析气体浓度的历史数据,对其迭代计算GM(1,1)模型中背景值系数,优化准光滑数列的平移量,得到最佳背景值系数序列,提出了基于改进背景值系数序列的灰色模型;其次,对预测气体加权处理,采用表征变量关联程度的互信息方法确定特征气体的权重;然后,建立基于PSO-LSSVM模型的多分类变压器故障诊断器;最后,仿真实验验证了所提方法的有效性。 展开更多
关键词 变压器 灰色模型 故障诊断 LS-SVM模型
在线阅读 下载PDF
航材库存规划策略研究 被引量:1
3
作者 李正欣 郭建胜 +2 位作者 张晓丰 李姗姗 鲜强 《火力与指挥控制》 CSCD 北大核心 2019年第5期31-33,37,共4页
现有的航材库存管理信息利用不充分,导致航材保障针对性不强、库存成本较大。以供应链库存管理理论为依据,在对航材分类的基础上,提出了航材库存规划策略,包括周转库存、安全库存与航材使用监控等方面,最后采用模糊综合评价方法对供应... 现有的航材库存管理信息利用不充分,导致航材保障针对性不强、库存成本较大。以供应链库存管理理论为依据,在对航材分类的基础上,提出了航材库存规划策略,包括周转库存、安全库存与航材使用监控等方面,最后采用模糊综合评价方法对供应商进行评价。能够有效缓解航材供需矛盾,提高库存资金使用效力。 展开更多
关键词 航材 库存管理 周转库存 安全库存 评价
在线阅读 下载PDF
密度峰值优化的球簇划分欠采样不平衡数据分类算法 被引量:14
4
作者 刘学文 王继奎 +4 位作者 杨正国 李强 易纪海 李冰 聂飞平 《计算机应用》 CSCD 北大核心 2022年第5期1455-1463,共9页
在集成算法中嵌入代价敏感和重采样方法是一种有效的不平衡数据分类混合策略。针对现有混合方法中误分代价计算和欠采样过程较少考虑样本的类内与类间分布的问题,提出了一种密度峰值优化的球簇划分欠采样不平衡数据分类算法DPBCPUSBoos... 在集成算法中嵌入代价敏感和重采样方法是一种有效的不平衡数据分类混合策略。针对现有混合方法中误分代价计算和欠采样过程较少考虑样本的类内与类间分布的问题,提出了一种密度峰值优化的球簇划分欠采样不平衡数据分类算法DPBCPUSBoost。首先,利用密度峰值信息定义多数类样本的抽样权重,将存在“近邻簇”的多数类球簇划分为“易误分区域”和“难误分区域”,并提高“易误分区域”内样本的抽样权重;其次,在初次迭代过程中按照抽样权重对多数类样本进行欠采样,之后每轮迭代中按样本分布权重对多数类样本进行欠采样,并把欠采样后的多数类样本与少数类样本组成临时训练集并训练弱分类器;最后,结合样本的密度峰值信息与类别分布为所有样本定义不同的误分代价,并通过代价调整函数增加高误分代价样本的权重。在10个KEEL数据集上的实验结果表明,与现有自适应增强(AdaBoost)、代价敏感自适应增强(AdaCost)、随机欠采样增强(RUSBoost)和代价敏感欠采样自适应增强(USCBoost)等不平衡数据分类算法相比,DPBCPUSBoost在准确率(Accuracy)、F1分数(F1-Score)、几何均值(G-mean)和受试者工作特征(ROC)曲线下的面积(AUC)指标上获得最高性能的数据集数量均多于对比算法。实验结果验证了DPBCPUSBoost中样本误分代价和抽样权重定义的有效性。 展开更多
关键词 不平衡数据分类 密度峰值 球聚类 代价敏感 欠采样
在线阅读 下载PDF
一种基于极大熵的快速无监督线性降维方法 被引量:2
5
作者 王继奎 杨正国 +3 位作者 刘学文 易纪海 李冰 聂飞平 《软件学报》 EI CSCD 北大核心 2023年第4期1779-1795,共17页
现实世界中高维数据无处不在,然而在高维数据中往往存在大量的冗余和噪声信息,这导致很多传统聚类算法在对高维数据聚类时不能获得很好的性能.实践中发现高维数据的类簇结构往往嵌入在较低维的子空间中.因而,降维成为挖掘高维数据类簇... 现实世界中高维数据无处不在,然而在高维数据中往往存在大量的冗余和噪声信息,这导致很多传统聚类算法在对高维数据聚类时不能获得很好的性能.实践中发现高维数据的类簇结构往往嵌入在较低维的子空间中.因而,降维成为挖掘高维数据类簇结构的关键技术.在众多降维方法中,基于图的降维方法是研究的热点.然而,大部分基于图的降维算法存在以下两个问题:(1)需要计算或者学习邻接图,计算复杂度高;(2)降维的过程中没有考虑降维后的用途.针对这两个问题,提出一种基于极大熵的快速无监督降维算法MEDR. MEDR算法融合线性投影和极大熵聚类模型,通过一种有效的迭代优化算法寻找高维数据嵌入在低维子空间的潜在最优类簇结构. MEDR算法不需事先输入邻接图,具有样本个数的线性时间复杂度.在真实数据集上的实验结果表明,与传统的降维方法相比, MEDR算法能够找到更好地将高维数据投影到低维子空间的投影矩阵,使投影后的数据有利于聚类. 展开更多
关键词 无监督学习 线性降维 邻接图 聚类 极大熵
在线阅读 下载PDF
密度峰值隶属度优化的半监督Self-Training算法 被引量:2
6
作者 刘学文 王继奎 +2 位作者 杨正国 李冰 聂飞平 《计算机科学与探索》 CSCD 北大核心 2022年第9期2078-2088,共11页
现实中由于获取标签的成本很高,大部分的数据只含有少量标签。相比监督学习和无监督学习,半监督学习能充分利用数据集中的大量无标签数据和少量有标签数据,以较少的标签成本获得较高的学习性能。自训练算法是一种经典的半监督学习算法,... 现实中由于获取标签的成本很高,大部分的数据只含有少量标签。相比监督学习和无监督学习,半监督学习能充分利用数据集中的大量无标签数据和少量有标签数据,以较少的标签成本获得较高的学习性能。自训练算法是一种经典的半监督学习算法,在其迭代优化分类器的过程中,不断从无标签样本中选取高置信度样本并由基分类器赋予标签,再将这些样本和伪标签添加进训练集。选取高置信度样本是Self-Training算法的关键,受密度峰值聚类算法(DPC)启发,将密度峰值用于高置信度样本的选取,提出了密度峰值隶属度优化的半监督Self-Training算法(STDPM)。首先,STDPM利用密度峰值发现样本的潜在空间结构信息并构造原型树。其次,搜索有标签样本在原型树上的无标签近亲结点,将无标签近亲结点的隶属于不同类簇的峰值定义为簇峰值,归一化后作为密度峰值隶属度。最后,将隶属度大于设定阈值的样本作为高置信度样本,由基分类器赋予标签后添加进训练集。STDPM充分利用密度峰值所隐含的密度和距离信息,提升了高置信度样本的选取质量,进而提升了分类性能。在8个基准数据集上进行对比实验,结果验证了STDPM算法的有效性。 展开更多
关键词 密度峰值隶属度 簇峰值 原型树 近亲结点集 自训练
在线阅读 下载PDF
基于锚点的快速无监督图嵌入 被引量:1
7
作者 杨辉 陶力宏 +1 位作者 朱建勇 聂飞平 《计算机科学》 CSCD 北大核心 2022年第4期116-123,共8页
图嵌入降维算法由于其有效性被广泛应用。传统图嵌入算法构造K-Nearest Neighbors(K-NN)图的计算复杂度至少为O(n^(2)d),其中n为样本数,d为样本维度。在数据量大的情况下,构造K-NN图将非常耗时,因为其计算复杂度与样本数的平方成正比,... 图嵌入降维算法由于其有效性被广泛应用。传统图嵌入算法构造K-Nearest Neighbors(K-NN)图的计算复杂度至少为O(n^(2)d),其中n为样本数,d为样本维度。在数据量大的情况下,构造K-NN图将非常耗时,因为其计算复杂度与样本数的平方成正比,这将限制图嵌入算法在大规模数据集上的应用。为降低构图过程的计算复杂度,提出一种基于锚点的快速无监督图嵌入算法(Fast Unsupervised Graph Embedding Based on Anchors,FUGE)。该算法首先从数据集中选取锚点(代表点),然后构造数据点-锚点相似度图,最后执行图嵌入分析。由于锚点数量远小于数据量,所提方法能有效地降低构图过程的计算复杂度;不同于使用核函数来构造相似度图,该算法直接通过数据点的近邻信息来学习数据点-锚点的相似度图,这进一步加快了构图过程。整个算法的计算复杂度为O(nd^(2)+nmd),其中m为锚点数。在基准数据集上的大量实验证明了所提算法的有效性和高效性。 展开更多
关键词 降维 图嵌入 锚点 K-means++ 正交约束
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部