期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MCB-Mamba-FECA的水产养殖溶解氧长期预测模型
1
作者
刘同来
陈子昂
+3 位作者
崔猛
庞惠元
刘双印
徐龙琴
《农业工程学报》
北大核心
2025年第15期183-191,共9页
为了提高大规模水产养殖的效率、降低养殖风险,并为养殖人员提供充足的反应时间以应对溶解氧(dissolved oxygen,DO)浓度的异常变化,该研究基于混合卷积块(mixed convolution block,MCB)改进的Mamba模型和频率增强通道注意力机制(frequen...
为了提高大规模水产养殖的效率、降低养殖风险,并为养殖人员提供充足的反应时间以应对溶解氧(dissolved oxygen,DO)浓度的异常变化,该研究基于混合卷积块(mixed convolution block,MCB)改进的Mamba模型和频率增强通道注意力机制(frequency enhanced channel attention,FECA),提出了一种高精度的水产养殖DO长期预测模型MCB-Mamba-FECA(MMFA)。首先,创新性引入了MCB以增强Mamba模型对短期复杂时序模式的捕获能力,实现对水质数据长短期依赖关系的均衡建模。此外,设计了FECA以提取水质数据中的频域特征,通过自适应权重调整强化关键频率信息的表达,从而更好地捕捉水质数据中显著的周期性与高频扰动。最后,在广州南沙某养殖厂对该模型进行了试验验证。结果表明,该研究提出的MMFA模型在DO单步预测中能够与大多数DO预测模型的性能齐平,而在更具挑战性的长期预测任务中则表现更加出色。在120 min(24步)的预测任务中相比次优模型平均绝对百分比误差、均方根误差和平均绝对误差分别降低了26.37%、14.29%和26.48%,为水产养殖的智能化管控提供了可靠的技术支撑。
展开更多
关键词
水产养殖
溶解氧预测
长期预测
Mamba
混合卷积块
频域
在线阅读
下载PDF
职称材料
基于轻量级CDW-YOLO v7的鱼类排便行为自动检测方法
2
作者
徐龙琴
郑钦月
+3 位作者
高学凯
崔猛
刘双印
谢彩健
《农业机械学报》
北大核心
2025年第6期554-564,共11页
粪便是集约化水产养殖系统中有机废物的主要来源,排便数量的增加和时间的延长都会加快养殖水质中氨氮、亚硝酸盐等污染物的积累浓度和速度,因此,排便行为模式对于维持最佳水环境和确保可持续的鱼类生产至关重要。为解决传统排便行为分...
粪便是集约化水产养殖系统中有机废物的主要来源,排便数量的增加和时间的延长都会加快养殖水质中氨氮、亚硝酸盐等污染物的积累浓度和速度,因此,排便行为模式对于维持最佳水环境和确保可持续的鱼类生产至关重要。为解决传统排便行为分析费时费力的问题,本研究提出一种基于改进YOLO v7-tiny的高性能、轻量级的鱼类排便行为识别模型CDW-YOLO v7。该模型采用基于C2f结构的双向特征金字塔网络(C2f-bidirectional feature pyramid network,C2f-BiFPN)优化识别排便行为的多尺度和非线性特征融合能力,同时引入具有注意力机制的动态检测头(Dynamic head,DyHead)以增强模型在复杂环境中对鱼类排便行为关键特征的提取能力,并结合WIoU损失函数,减少因鱼类遮挡、重叠等造成的漏检现象,提高模型的准确性。实验结果表明,与基线模型YOLO v7-tiny相比,CDW-YOLO v7模型具有更好的性能,参数量减少2.56×10^(6),浮点运算量降低5.90×10^(9),同时平均精度均值(mean Average Precision,mAP)提高2.04个百分点。此外,该模型在模型大小、精度和检测速度等方面,均优于3种经典目标检测算法(YOLO v3-tiny、YOLO v4-tiny和YOLO v5s)。本研究为鱼类排便行为的精准检测和智能化水产养殖系统的发展提供了理论基础。
展开更多
关键词
鱼类排便行为
水产养殖
YOLO
v7-tiny
目标检测
在线阅读
下载PDF
职称材料
题名
基于MCB-Mamba-FECA的水产养殖溶解氧长期预测模型
1
作者
刘同来
陈子昂
崔猛
庞惠元
刘双印
徐龙琴
机构
仲恺农业工程学院人工智能学院
广东省高校智慧农业工程技术研究
中心
仲恺农业工程学院智慧农业创新研究院
广州市农产品质量安全溯源信息技术重点实验室
广东省农产品安全大数据工程技术研究
中心
英国
萨里大学视觉、语音和信号处理中心
出处
《农业工程学报》
北大核心
2025年第15期183-191,共9页
基金
国家自然科学基金项目(62373390)
广州市科技计划项目(2023E04J1238,2023E04J1239)
广东省基础与应用基础研究基金项目(2023A1515011230)。
文摘
为了提高大规模水产养殖的效率、降低养殖风险,并为养殖人员提供充足的反应时间以应对溶解氧(dissolved oxygen,DO)浓度的异常变化,该研究基于混合卷积块(mixed convolution block,MCB)改进的Mamba模型和频率增强通道注意力机制(frequency enhanced channel attention,FECA),提出了一种高精度的水产养殖DO长期预测模型MCB-Mamba-FECA(MMFA)。首先,创新性引入了MCB以增强Mamba模型对短期复杂时序模式的捕获能力,实现对水质数据长短期依赖关系的均衡建模。此外,设计了FECA以提取水质数据中的频域特征,通过自适应权重调整强化关键频率信息的表达,从而更好地捕捉水质数据中显著的周期性与高频扰动。最后,在广州南沙某养殖厂对该模型进行了试验验证。结果表明,该研究提出的MMFA模型在DO单步预测中能够与大多数DO预测模型的性能齐平,而在更具挑战性的长期预测任务中则表现更加出色。在120 min(24步)的预测任务中相比次优模型平均绝对百分比误差、均方根误差和平均绝对误差分别降低了26.37%、14.29%和26.48%,为水产养殖的智能化管控提供了可靠的技术支撑。
关键词
水产养殖
溶解氧预测
长期预测
Mamba
混合卷积块
频域
Keywords
aquaculture
dissolved oxygen prediction
long-term prediction
Mamba
mixed convolutional block
frequency domain
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
基于轻量级CDW-YOLO v7的鱼类排便行为自动检测方法
2
作者
徐龙琴
郑钦月
高学凯
崔猛
刘双印
谢彩健
机构
仲恺农业工程学院信息科学与技术学院
仲恺农业工程学院智慧农业创新研究院
天津农学院计算机与信息工程学院
萨里大学视觉、语音和信号处理中心
出处
《农业机械学报》
北大核心
2025年第6期554-564,共11页
基金
国家自然科学基金项目(62373390)
广东省基础与应用基础研究项目(2023A1515011230)
广州市科技计划项目(2023E04J1238、2023E04J1239)。
文摘
粪便是集约化水产养殖系统中有机废物的主要来源,排便数量的增加和时间的延长都会加快养殖水质中氨氮、亚硝酸盐等污染物的积累浓度和速度,因此,排便行为模式对于维持最佳水环境和确保可持续的鱼类生产至关重要。为解决传统排便行为分析费时费力的问题,本研究提出一种基于改进YOLO v7-tiny的高性能、轻量级的鱼类排便行为识别模型CDW-YOLO v7。该模型采用基于C2f结构的双向特征金字塔网络(C2f-bidirectional feature pyramid network,C2f-BiFPN)优化识别排便行为的多尺度和非线性特征融合能力,同时引入具有注意力机制的动态检测头(Dynamic head,DyHead)以增强模型在复杂环境中对鱼类排便行为关键特征的提取能力,并结合WIoU损失函数,减少因鱼类遮挡、重叠等造成的漏检现象,提高模型的准确性。实验结果表明,与基线模型YOLO v7-tiny相比,CDW-YOLO v7模型具有更好的性能,参数量减少2.56×10^(6),浮点运算量降低5.90×10^(9),同时平均精度均值(mean Average Precision,mAP)提高2.04个百分点。此外,该模型在模型大小、精度和检测速度等方面,均优于3种经典目标检测算法(YOLO v3-tiny、YOLO v4-tiny和YOLO v5s)。本研究为鱼类排便行为的精准检测和智能化水产养殖系统的发展提供了理论基础。
关键词
鱼类排便行为
水产养殖
YOLO
v7-tiny
目标检测
Keywords
fish defecation behavior
aquaculture
YOLO v7-tiny
object detection
分类号
S951.2 [农业科学—水产养殖]
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MCB-Mamba-FECA的水产养殖溶解氧长期预测模型
刘同来
陈子昂
崔猛
庞惠元
刘双印
徐龙琴
《农业工程学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于轻量级CDW-YOLO v7的鱼类排便行为自动检测方法
徐龙琴
郑钦月
高学凯
崔猛
刘双印
谢彩健
《农业机械学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部