期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进MobileNet v3-small模型的苹果叶片病害识别方法
1
作者 王浩宇 胡玉荣 +3 位作者 崔艳荣 陈华锋 李素若 刘奕 《江苏农业科学》 北大核心 2025年第5期113-120,共8页
针对真实环境下苹果叶片病害识别背景复杂、识别准确率不高的现状,提出基于改进MobileNet v3-small模型的苹果叶片病害识别方法,根据苹果叶片病害特征,在模型主干网络前嵌入Inception v2模型,不仅可增强模型对特征的多尺度感知能力,还... 针对真实环境下苹果叶片病害识别背景复杂、识别准确率不高的现状,提出基于改进MobileNet v3-small模型的苹果叶片病害识别方法,根据苹果叶片病害特征,在模型主干网络前嵌入Inception v2模型,不仅可增强模型对特征的多尺度感知能力,还能使模型更好地捕捉到病害的细微差异,有助于提升特征的多样性;同时在池化层前引入通道混洗,将输入通道分成2个组进行混洗操作,便于通道之间的信息交互,使得模型对特征的整合能力有所提升,有助于提升模型对复杂背景下病害特征的识别效果。采用覆盖斑点落叶病、褐斑病、花叶病、灰斑病和锈病等5种常见病害的图像数据集进行试验。结果表明,改进的模型比原模型平均召回率提升1.98百分点,平均F1分数提升1.97百分点,Top-1准确率提升1.89百分点,平均精确率提升1.88百分点,而参数量仅为17.7 M,与其他经典网络模型相比,性能评估指标均有不同程度的提升。改进的模型可为真实场景下苹果叶片病害的识别提供一种新颖且有效的方法。 展开更多
关键词 苹果叶片病害 图像识别 MobileNet v3-small模型 通道混洗 Inception v2模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部