期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混合遗传算法与互信息分析的高维小样本特征选择 被引量:6
1
作者 姚树春 刘正 张强 《计算机应用与软件》 北大核心 2020年第1期247-255,共9页
针对高维小样本数据特征选择冗余度高和过拟合的问题,提出一种基于混合遗传算法与互信息分析的高维小样本特征选择算法。对互信息理论与特征选择问题进行深入分析,利用互信息消除特征冗余度能力强的优点,推理出基于互信息的目标函数和... 针对高维小样本数据特征选择冗余度高和过拟合的问题,提出一种基于混合遗传算法与互信息分析的高维小样本特征选择算法。对互信息理论与特征选择问题进行深入分析,利用互信息消除特征冗余度能力强的优点,推理出基于互信息的目标函数和优化的边界条件;设计混合的遗传算法来充分利用高维小样本数据集不同角度的属性数据,混合遗传算法设立主种群和次种群,在每次迭代中利用次种群的结果引导主种群的演化,从而缓解小样本数据带来的过拟合问题。基于医学数据集的对比实验结果表明,该算法有效地增强了遗传算法的稳定性和鲁棒性,并且实现了较好的特征选择效果。 展开更多
关键词 高维小样本数据 特征选择 互信息 遗传算法 过拟合问题 微阵列数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部