红外与可见光图像融合方法中存在信息提取和特征解耦不充分、可解释性较低等问题,为了充分提取并融合源图像有效信息,本文提出了一种基于信息瓶颈孪生自编码网络的红外与可见光图像融合方法(DIBF:Double Information Bottleneck Fusion...红外与可见光图像融合方法中存在信息提取和特征解耦不充分、可解释性较低等问题,为了充分提取并融合源图像有效信息,本文提出了一种基于信息瓶颈孪生自编码网络的红外与可见光图像融合方法(DIBF:Double Information Bottleneck Fusion)。该方法通过在孪生分支上构建信息瓶颈模块实现互补特征与冗余特征的解耦,进而将互补信息的表达过程对应于信息瓶颈前半部分的特征拟合过程,将冗余特征的压缩过程对应于信息瓶颈后半部分的特征压缩过程,巧妙地将图像融合中信息提取与融合表述为信息瓶颈权衡问题,通过寻找信息最优表达来实现融合。在信息瓶颈模块中,网络通过训练得到特征的信息权重图,并依据信息权重图,使用均值特征对冗余特征进行压缩,同时通过损失函数促进互补信息的表达,压缩与表达两部分权衡优化同步进行,冗余信息和互补信息也在此过程中得到解耦。在融合阶段,将信息权重图应用在融合规则中,提高了融合图像的信息丰富性。通过在标准图像TNO数据集上进行主客观实验,与传统和近来融合方法进行比较分析,结果显示本文方法能有效融合红外与可见光图像中的有用信息,在视觉感知和定量指标上均取得较好的效果。展开更多
石质文物假山长期曝露于室外,受多源因素影响易形成不均匀沉降,因此假山沉降传感器监测与长时精准预测对石质文物保护十分必要。现有沉降长时预测方法难以有效解决噪声和瞬时波动造成的精度降低与应用可靠性问题。为此,本文提出一种融...石质文物假山长期曝露于室外,受多源因素影响易形成不均匀沉降,因此假山沉降传感器监测与长时精准预测对石质文物保护十分必要。现有沉降长时预测方法难以有效解决噪声和瞬时波动造成的精度降低与应用可靠性问题。为此,本文提出一种融合多源因素的编码器-解码器沉降长时预测模型。在多源因素编码器中设计动态多源因素融合模块将深度特征进行融合并实时计算沉降、温度、振动、裂缝等多源因素与目标数据的动态相关性;在时域增强解码器中构建多头自适应平滑模块,通过多头注意力的方法自适应学习各时间步的平滑指数,保留时间序列长期趋势,减少传感器带来的噪声和瞬时波动。本模型以环秀山庄沉降监测系统的实测数据集进行验证,结果表明该模型相较于基线方法在评价指标均方根误差(Root Mean Squared Error,RMSE)指标、平均绝对误差(Mean Absolute Error,MAE)指标以及连续排序概率评分(Continuous Ranked Probability Score,CRPS)最高分别提升了19.1%、19%以及16.3%,且符合实际应用需求。展开更多
针对时变负载下,笼型电机定子电流呈现出非平稳、非周期性,使得现有时变负载下的转子断条故障识别方法受电流基频调制影响而出现诊断失效的问题,提出了一种基于提格-凯撒能量算子(Teager-Kaiser energy operator,TKEO)的时变负载下笼型...针对时变负载下,笼型电机定子电流呈现出非平稳、非周期性,使得现有时变负载下的转子断条故障识别方法受电流基频调制影响而出现诊断失效的问题,提出了一种基于提格-凯撒能量算子(Teager-Kaiser energy operator,TKEO)的时变负载下笼型电机转子断条故障诊断方法。该方法采用TKEO提取电流信号的瞬时频率,以判断电机断条故障的严重程度。为验证该方法的有效性和优越性,通过实验获取不同健康状态和不同负载条件下的电流信号,并对其进行诊断。同时将分析结果与传统方法进行了多维度的比较。结果表明:该方法在时变负载下能够更准确地区分电机的健康状态,对负载扰动具有更强的鲁棒性,特别是轻载运行状态下,该方法的相对变化梯度数值差异相较于传统方法高4~6倍,此外,提取到的故障频率波动范围更集中在0~5 Hz之间。展开更多
文摘红外与可见光图像融合方法中存在信息提取和特征解耦不充分、可解释性较低等问题,为了充分提取并融合源图像有效信息,本文提出了一种基于信息瓶颈孪生自编码网络的红外与可见光图像融合方法(DIBF:Double Information Bottleneck Fusion)。该方法通过在孪生分支上构建信息瓶颈模块实现互补特征与冗余特征的解耦,进而将互补信息的表达过程对应于信息瓶颈前半部分的特征拟合过程,将冗余特征的压缩过程对应于信息瓶颈后半部分的特征压缩过程,巧妙地将图像融合中信息提取与融合表述为信息瓶颈权衡问题,通过寻找信息最优表达来实现融合。在信息瓶颈模块中,网络通过训练得到特征的信息权重图,并依据信息权重图,使用均值特征对冗余特征进行压缩,同时通过损失函数促进互补信息的表达,压缩与表达两部分权衡优化同步进行,冗余信息和互补信息也在此过程中得到解耦。在融合阶段,将信息权重图应用在融合规则中,提高了融合图像的信息丰富性。通过在标准图像TNO数据集上进行主客观实验,与传统和近来融合方法进行比较分析,结果显示本文方法能有效融合红外与可见光图像中的有用信息,在视觉感知和定量指标上均取得较好的效果。
文摘石质文物假山长期曝露于室外,受多源因素影响易形成不均匀沉降,因此假山沉降传感器监测与长时精准预测对石质文物保护十分必要。现有沉降长时预测方法难以有效解决噪声和瞬时波动造成的精度降低与应用可靠性问题。为此,本文提出一种融合多源因素的编码器-解码器沉降长时预测模型。在多源因素编码器中设计动态多源因素融合模块将深度特征进行融合并实时计算沉降、温度、振动、裂缝等多源因素与目标数据的动态相关性;在时域增强解码器中构建多头自适应平滑模块,通过多头注意力的方法自适应学习各时间步的平滑指数,保留时间序列长期趋势,减少传感器带来的噪声和瞬时波动。本模型以环秀山庄沉降监测系统的实测数据集进行验证,结果表明该模型相较于基线方法在评价指标均方根误差(Root Mean Squared Error,RMSE)指标、平均绝对误差(Mean Absolute Error,MAE)指标以及连续排序概率评分(Continuous Ranked Probability Score,CRPS)最高分别提升了19.1%、19%以及16.3%,且符合实际应用需求。
文摘针对时变负载下,笼型电机定子电流呈现出非平稳、非周期性,使得现有时变负载下的转子断条故障识别方法受电流基频调制影响而出现诊断失效的问题,提出了一种基于提格-凯撒能量算子(Teager-Kaiser energy operator,TKEO)的时变负载下笼型电机转子断条故障诊断方法。该方法采用TKEO提取电流信号的瞬时频率,以判断电机断条故障的严重程度。为验证该方法的有效性和优越性,通过实验获取不同健康状态和不同负载条件下的电流信号,并对其进行诊断。同时将分析结果与传统方法进行了多维度的比较。结果表明:该方法在时变负载下能够更准确地区分电机的健康状态,对负载扰动具有更强的鲁棒性,特别是轻载运行状态下,该方法的相对变化梯度数值差异相较于传统方法高4~6倍,此外,提取到的故障频率波动范围更集中在0~5 Hz之间。