平面特征作为一种高层几何特征而广泛存在于结构化环境中,对于大多数同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)系统来说是个很好的补充。为了解决特征点与平面特征融合时引入了新的误差并且平面存在着退化的可能...平面特征作为一种高层几何特征而广泛存在于结构化环境中,对于大多数同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)系统来说是个很好的补充。为了解决特征点与平面特征融合时引入了新的误差并且平面存在着退化的可能,本文提出了一个融合异质特征的单目视觉惯性SLAM系统。首先从灰度图像中提取特征点;其次对特征点集合进行三角剖分,并将三角剖分的结果转换到世界坐标系下;接着将初始化过程建模为有约束的优化问题,并用交替方向乘子法分布式求解;然后对相似平面进行聚类,并用所提出的平面碰撞概率模型拟合平面,得到对应的有界平面参数;最后在因子图中引入了平面特征的几何约束,通过误差模型同时优化相机运动以及平面参数。与典型的视觉惯性SLAM系统VINS相比,本文提出的系统在EuRoC数据集的绝对轨迹误差平均值降低了50%;在TUM-Ⅵ数据集的绝对轨迹误差平均值降低了40%。该方法能够在结构化场景中稳定、连续地工作,并且提高了弱纹理区域的定位精度和鲁棒性。展开更多
文摘平面特征作为一种高层几何特征而广泛存在于结构化环境中,对于大多数同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)系统来说是个很好的补充。为了解决特征点与平面特征融合时引入了新的误差并且平面存在着退化的可能,本文提出了一个融合异质特征的单目视觉惯性SLAM系统。首先从灰度图像中提取特征点;其次对特征点集合进行三角剖分,并将三角剖分的结果转换到世界坐标系下;接着将初始化过程建模为有约束的优化问题,并用交替方向乘子法分布式求解;然后对相似平面进行聚类,并用所提出的平面碰撞概率模型拟合平面,得到对应的有界平面参数;最后在因子图中引入了平面特征的几何约束,通过误差模型同时优化相机运动以及平面参数。与典型的视觉惯性SLAM系统VINS相比,本文提出的系统在EuRoC数据集的绝对轨迹误差平均值降低了50%;在TUM-Ⅵ数据集的绝对轨迹误差平均值降低了40%。该方法能够在结构化场景中稳定、连续地工作,并且提高了弱纹理区域的定位精度和鲁棒性。