期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
顾及样本优化选择的机器学习云检测研究
1
作者 张辉 周仿荣 +4 位作者 徐真 文刚 马御棠 韩旭 吴磊 《航天返回与遥感》 CSCD 北大核心 2024年第1期161-173,共13页
针对云层日变化、云类型、云相态、云光学厚度等特征差异带来的光谱差异,导致传统阈值算法对云识别精度不高的问题,文章提出了一种顾及样本优化选择,耦合物理阈值方法和机器学习的云检测算法模型,利用“葵花8号”卫星(Himawari-8)数据... 针对云层日变化、云类型、云相态、云光学厚度等特征差异带来的光谱差异,导致传统阈值算法对云识别精度不高的问题,文章提出了一种顾及样本优化选择,耦合物理阈值方法和机器学习的云检测算法模型,利用“葵花8号”卫星(Himawari-8)数据进行日间云检测。通过样本优化选择,使样本中尽可能包括不同情形下的云特征,为机器学习模型提供良好的样本基础,增加模型泛化能力;同时输入特征除了考虑反照率、亮温、亮温差以及天顶角等因素外,还加入了基于反照率和亮温差的物理阈值方法云识别结果;最后基于极限随机树模型进行云检测。结果表明:模型云检测交叉验证精度为96.41%,总漏检率和总虚检率分别为2.08%和0.91%;通过云-气溶胶激光雷达与红外探路者卫星观测(CALIPSO)产品数据进行对比分析,结果显示云检测总体精度为97.1%。 展开更多
关键词 样本优化 极限随机树 机器学习 云检测 航天遥感
在线阅读 下载PDF
基于改进DeepLabV3+的云南省光伏板识别方法
2
作者 徐真 周仿荣 +4 位作者 高振宇 文刚 马御棠 朱鹏航 吴磊 《东华大学学报(自然科学版)》 2025年第2期215-221,共7页
光伏板提取是山火遥感监测虚警库建设的重要部分,对于避免山火遥感监测误报、提升山火遥感监测运行效率等具有重要意义。云南省地处云贵高原,地表环境较为复杂,采用遥感技术提取光伏板面临较大挑战。为克服光伏板样本不均衡等难点,将Res... 光伏板提取是山火遥感监测虚警库建设的重要部分,对于避免山火遥感监测误报、提升山火遥感监测运行效率等具有重要意义。云南省地处云贵高原,地表环境较为复杂,采用遥感技术提取光伏板面临较大挑战。为克服光伏板样本不均衡等难点,将ResNet-50残差网络作为DeepLabV3+语义分割模型的骨干网络,在空洞空间金字塔池化(ASPP)模块后融入注意力机制以更有效地聚合特征的多尺度上下文信息。构建云南省光伏板提取模型,并进行精度评价。结果显示,利用改进的DeepLabV3+模型进行光伏板提取的精准率达97.95%,召回率达95.84%,交并比达93.73%,在各模型中表现最佳,能实现高精度的光伏板提取,利用该模型提取云南省光伏板面积共40.149 km^(2)。 展开更多
关键词 DeepLabV3+ 光伏板 语义分割 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部