期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FFConvNeXt3D:提取中大规模目标特征的大卷积核网络 被引量:1
1
作者 黄乾坤 黄蔚 凌兴宏 《郑州大学学报(理学版)》 CAS 北大核心 2025年第2期37-43,共7页
目前大卷积核模型在图像领域已经证明其有效性,但是在视频领域还没有优秀的3D大卷积核模型。此外,之前的工作中忽视了时空行为检测任务主体是人的特点,其中的骨干网络只针对通用目标提取特征。针对上述原因,提出了一种含有特征融合结构... 目前大卷积核模型在图像领域已经证明其有效性,但是在视频领域还没有优秀的3D大卷积核模型。此外,之前的工作中忽视了时空行为检测任务主体是人的特点,其中的骨干网络只针对通用目标提取特征。针对上述原因,提出了一种含有特征融合结构的3D大卷积核神经网络(FFConvNeXt3D)。首先,将成熟的ConvNeXt网络膨胀成用于视频领域的ConvNeXt3D网络,其中,预训练权重也进行处理用于膨胀后的网络。其次,研究了卷积核时间维度大小和位置对模型性能的影响。最后,提出了一个特征融合结构,着重提高骨干网络提取人物大小目标特征的能力。在UCF101-24数据集上进行了消融实验和对比实验,实验结果验证了特征融合结构的有效性,并且该模型性能优于其他方法。 展开更多
关键词 大卷积核 目标检测 时空行为检测 行为识别 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部