期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
部分可解释机器学习方法的高光谱人参产地识别和分析 被引量:10
1
作者 李梦 张小波 +6 位作者 刘绍波 陈兴峰 黄璐琦 史婷婷 杨瑞 刘舒 郑逢杰 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第4期1217-1221,共5页
人参是传统中药材中的贵重品种,具有较高的经济价值。人参生长的地域性很强,不同产地人参有效成分含量存在差异,人参因“道地”与否,会导致其质量、医学效用和经济价值的差异,因此人参产地识别的意义重大。目前常通过磨粉提取等制备,再... 人参是传统中药材中的贵重品种,具有较高的经济价值。人参生长的地域性很强,不同产地人参有效成分含量存在差异,人参因“道地”与否,会导致其质量、医学效用和经济价值的差异,因此人参产地识别的意义重大。目前常通过磨粉提取等制备,再采用化学或光学等多种手段检验人参产地,但会造成样本破坏。而基于外观性状或芦头特征的鉴别,因主观性差异不能作为标准化的识别方法。如何用高精度、无损、快速检测识别的方法,对人参的产地进行识别分析,是该研究的主要立足点。通过采用高光谱成像技术,对已知产地信息的人参样本,通过获取从400~2 500 nm的反射光谱,经过基于白板的绝对和相对辐射校正处理,构建了高光谱反射率数据集。采用随机森林的机器学习方法,构建了基于高光谱数据的全光谱人参产地识别模型,并对不同尺度的地域划分规则分别开展了产地识别精度验证,发现不同产地的人参光谱有明显区别。其中东三省与否的产地识别精度,可以达到98.2%。同时利用随机森林基于决策树构建的优势,获得了人参产地识别的光谱重要性结果,为专用轻量化仪器研发指明特征光谱。高光谱人参产地识别研究作为严格的无损检测方式,将对人参等道地药材的产地识别、药材图谱指纹认知和挖掘、药材鉴定和质量评价等提供理论支撑和技术手段。 展开更多
关键词 高光谱 随机森林 可解释性 人参 中药材 产地
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部