针对互联网开放数据中文本表述模糊、实体边界不清等问题,构建航天语料库Space-Corpus,提出一种基于BERT+Bi-LSTM+CRF的航天领域命名实体识别模型。基于微调的多层双向Transformer编码器(bidirectional encoder representations from tr...针对互联网开放数据中文本表述模糊、实体边界不清等问题,构建航天语料库Space-Corpus,提出一种基于BERT+Bi-LSTM+CRF的航天领域命名实体识别模型。基于微调的多层双向Transformer编码器(bidirectional encoder representations from transformer,BERT)模型生成输入语料的向量化表示,结合双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)获取上下文特征,通过条件随机场(conditional random field,CRF)层进行序列解码标注,输出得分最高的预测标签。实验结果表明,该模型在Space-Corpus语料库上较基于BERT模型、基于BERT+Bi-LSTM以及基于CNN+Bi-LSTM+CRF识别模型的准确率、召回率及F1值均有提升。展开更多
定量评估航天侦察装备效能是武器装备体系建设的重要环节之一,对装备发展和作战应用具有重要的现实意义。针对评估样本数据少、效能在多指标因素影响下变化规律非线性等条件下的效能评估问题,提出一种基于改进灰狼(improved grey wolf o...定量评估航天侦察装备效能是武器装备体系建设的重要环节之一,对装备发展和作战应用具有重要的现实意义。针对评估样本数据少、效能在多指标因素影响下变化规律非线性等条件下的效能评估问题,提出一种基于改进灰狼(improved grey wolf optimizer,IGWO)算法优化的支持向量回归机(support vector regression,SVR)评估方法(IGWO-SVR)。引入反向学习策略及余弦非线性收敛因子改进灰狼优化算法收敛性能及全局寻优能力,并将其应用于基于支持SVR效能评估参数的优化。基于航天侦察装备特点,构建评估指标体系及航天侦察装备效能评估模型。最后,通过对一定作战想定背景下航天侦察装备效能进行仿真评估,验证了所提方法的合理性及优化模型的有效性。展开更多
针对逼近理想点排序法(technique for order preference by similarity to ideal solution,TOPSIS)存在的缺陷,提出基于Tanimoto系数和基于对称差的2种改进TOPSIS。改善或解决TOPSIS存在指标相关性问题、特殊样本集合无法比较优劣问题...针对逼近理想点排序法(technique for order preference by similarity to ideal solution,TOPSIS)存在的缺陷,提出基于Tanimoto系数和基于对称差的2种改进TOPSIS。改善或解决TOPSIS存在指标相关性问题、特殊样本集合无法比较优劣问题和样本数据动态变化时产生的逆序现象等缺陷;在稳定性、特异性、敏感性和有效性4方面对经典TOPSIS模型、改进Tanimoto模型和改进对称差模型进行对比验证,给出2种改进模型的适用场景。结果表明,2种方法各具有一定的优势。展开更多
侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择...侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择压力与多样性不足的问题,提出了TOPSIS-MOPSO(Technique for Order Preference by Similarity to an Ideal Solution-Multi-Objective Particle Swarm Optimization)算法,将多属性决策领域的TOPSIS引入进化算法中,并与SPD(Strengthened Pareto Dominate)相结合,得到一种能够同时增强种群收敛性与多样性的环境选择策略。提出了基于Harmonic距离的全局最优粒子选择策略,加快种群收敛速度,保护种群多样性;提出了自适应进化算子选择策略,帮助算法摆脱局部最优解。将TOPSIS-MOPSO算法应用在侦察星座优化问题上,并与MOPSO、DGEA、AR-MOEA 3种经典方法进行实验对比分析,实验结果显示,所提算法比其他3种算法在Δ*、IGD和HV上的最优指标值分别提升了19.76%、89.07%和28.2%。展开更多
文摘针对互联网开放数据中文本表述模糊、实体边界不清等问题,构建航天语料库Space-Corpus,提出一种基于BERT+Bi-LSTM+CRF的航天领域命名实体识别模型。基于微调的多层双向Transformer编码器(bidirectional encoder representations from transformer,BERT)模型生成输入语料的向量化表示,结合双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)获取上下文特征,通过条件随机场(conditional random field,CRF)层进行序列解码标注,输出得分最高的预测标签。实验结果表明,该模型在Space-Corpus语料库上较基于BERT模型、基于BERT+Bi-LSTM以及基于CNN+Bi-LSTM+CRF识别模型的准确率、召回率及F1值均有提升。
文摘针对逼近理想点排序法(technique for order preference by similarity to ideal solution,TOPSIS)存在的缺陷,提出基于Tanimoto系数和基于对称差的2种改进TOPSIS。改善或解决TOPSIS存在指标相关性问题、特殊样本集合无法比较优劣问题和样本数据动态变化时产生的逆序现象等缺陷;在稳定性、特异性、敏感性和有效性4方面对经典TOPSIS模型、改进Tanimoto模型和改进对称差模型进行对比验证,给出2种改进模型的适用场景。结果表明,2种方法各具有一定的优势。
文摘侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择压力与多样性不足的问题,提出了TOPSIS-MOPSO(Technique for Order Preference by Similarity to an Ideal Solution-Multi-Objective Particle Swarm Optimization)算法,将多属性决策领域的TOPSIS引入进化算法中,并与SPD(Strengthened Pareto Dominate)相结合,得到一种能够同时增强种群收敛性与多样性的环境选择策略。提出了基于Harmonic距离的全局最优粒子选择策略,加快种群收敛速度,保护种群多样性;提出了自适应进化算子选择策略,帮助算法摆脱局部最优解。将TOPSIS-MOPSO算法应用在侦察星座优化问题上,并与MOPSO、DGEA、AR-MOEA 3种经典方法进行实验对比分析,实验结果显示,所提算法比其他3种算法在Δ*、IGD和HV上的最优指标值分别提升了19.76%、89.07%和28.2%。