矿产资源地质报告中蕴含大量专家经验及基础地质知识。快速准确地从海量矿产资源文本中抽取形成结构化知识已成为目前研究热点,命名实体识别是信息抽取与知识挖掘的重要步骤。针对矿产资源地质文本中存在实体长度长、专业术语多、实体...矿产资源地质报告中蕴含大量专家经验及基础地质知识。快速准确地从海量矿产资源文本中抽取形成结构化知识已成为目前研究热点,命名实体识别是信息抽取与知识挖掘的重要步骤。针对矿产资源地质文本中存在实体长度长、专业术语多、实体嵌套等问题,已有基于深度学习的命名实体识别直接应用在矿产资源领域性能低下,本文提出了一种矿产资源命名实体识别深度学习模型:ALBERT(A Lite Bidirectional Encoder Representations from Transformers)-BiLSTM(Bi-directional Long Short-Term Memory)-CRF(Conditional Random Field),通过ALBERT预训练语言模型获取地质文本丰富语义特征,同时结合汉字拼音、字形和词边界特征来共同作为嵌入层,从而提高对复杂实体的识别能力。本文方法在人民日报、电子简历数据集及构建的矿产资源数据集上进行实验,结果表明提出方法在准确率、召回率、F1值上分别达到70.97%、64.33%、67.49%。展开更多
以江苏省永久耕地为例,基于2001—2019年中分辨率成像光谱仪(Moderate resolution imaging spectroradiometer,MODIS)遥感影像,开展耕地生产力隐性退化遥感监测和影响因素分析。BFAST(Breaks for additive seasonal and trend)算法用于...以江苏省永久耕地为例,基于2001—2019年中分辨率成像光谱仪(Moderate resolution imaging spectroradiometer,MODIS)遥感影像,开展耕地生产力隐性退化遥感监测和影响因素分析。BFAST(Breaks for additive seasonal and trend)算法用于建模历史时期耕地生产力变化的预期行为,并以此为基准判断监测时期耕地生产力是否存在隐性退化风险。基于地理探测器,从3个准则层的8项指标变量对耕地生产力隐性退化进行了主导影响因素探测和因子交互分析。研究结果表明:江苏省存在生产力隐性退化的耕地比例为21.9%,具有显著的空间差异。西北地区的徐州市、宿迁市的耕地生产力隐性退化比例最高,分别为47.2%和43.4%,且表现出聚集性。东南地区的苏州市、无锡市和南通市的耕地生产力隐性退化比例较低,均不足10%。因子探测分析表明外流人口数量、种植业从业人员数量和农业机械化总动力3项指标对江苏省耕地生产力隐性退化的解释力最强。多因子交互耦合后,人口因素与生产条件解释力增强最为显著。耕地生产力隐性退化的地域分异类型划分为生产条件约束型、产出效益约束型和人口因素约束型。农业机械化总动力、农业产值和外流人口数量分别为3种约束类型的首要因素。从地域空间来看,人口因素约束型地区在江苏省占比最大,主要集中于苏北地区。对于不同约束类型区域分别提出加强高标准农田建设、实施惠农政策、减缓劳动力析出等相应的政策建议。展开更多
文摘矿产资源地质报告中蕴含大量专家经验及基础地质知识。快速准确地从海量矿产资源文本中抽取形成结构化知识已成为目前研究热点,命名实体识别是信息抽取与知识挖掘的重要步骤。针对矿产资源地质文本中存在实体长度长、专业术语多、实体嵌套等问题,已有基于深度学习的命名实体识别直接应用在矿产资源领域性能低下,本文提出了一种矿产资源命名实体识别深度学习模型:ALBERT(A Lite Bidirectional Encoder Representations from Transformers)-BiLSTM(Bi-directional Long Short-Term Memory)-CRF(Conditional Random Field),通过ALBERT预训练语言模型获取地质文本丰富语义特征,同时结合汉字拼音、字形和词边界特征来共同作为嵌入层,从而提高对复杂实体的识别能力。本文方法在人民日报、电子简历数据集及构建的矿产资源数据集上进行实验,结果表明提出方法在准确率、召回率、F1值上分别达到70.97%、64.33%、67.49%。
文摘以江苏省永久耕地为例,基于2001—2019年中分辨率成像光谱仪(Moderate resolution imaging spectroradiometer,MODIS)遥感影像,开展耕地生产力隐性退化遥感监测和影响因素分析。BFAST(Breaks for additive seasonal and trend)算法用于建模历史时期耕地生产力变化的预期行为,并以此为基准判断监测时期耕地生产力是否存在隐性退化风险。基于地理探测器,从3个准则层的8项指标变量对耕地生产力隐性退化进行了主导影响因素探测和因子交互分析。研究结果表明:江苏省存在生产力隐性退化的耕地比例为21.9%,具有显著的空间差异。西北地区的徐州市、宿迁市的耕地生产力隐性退化比例最高,分别为47.2%和43.4%,且表现出聚集性。东南地区的苏州市、无锡市和南通市的耕地生产力隐性退化比例较低,均不足10%。因子探测分析表明外流人口数量、种植业从业人员数量和农业机械化总动力3项指标对江苏省耕地生产力隐性退化的解释力最强。多因子交互耦合后,人口因素与生产条件解释力增强最为显著。耕地生产力隐性退化的地域分异类型划分为生产条件约束型、产出效益约束型和人口因素约束型。农业机械化总动力、农业产值和外流人口数量分别为3种约束类型的首要因素。从地域空间来看,人口因素约束型地区在江苏省占比最大,主要集中于苏北地区。对于不同约束类型区域分别提出加强高标准农田建设、实施惠农政策、减缓劳动力析出等相应的政策建议。