期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于超像素的流形正则化稀疏约束NMF混合像元分解算法 被引量:3
1
作者 李登刚 陈香香 +1 位作者 李华丽 王忠美 《计算机应用》 CSCD 北大核心 2019年第10期3100-3106,共7页
针对传统非负矩阵分解(NMF)法用于高光谱图像混合像元分解时产生的分解结果精度不高、对噪声敏感等问题,提出一种基于超像素的流形正则化稀疏约束NMF混合像元分解算法——MRS-NMF。首先,通过基于熵率的超像素分割来构造高光谱图像的流... 针对传统非负矩阵分解(NMF)法用于高光谱图像混合像元分解时产生的分解结果精度不高、对噪声敏感等问题,提出一种基于超像素的流形正则化稀疏约束NMF混合像元分解算法——MRS-NMF。首先,通过基于熵率的超像素分割来构造高光谱图像的流形结构,把原图像分割为k个超像素块并把每个超像素块中具有相似性质的数据点标上相同的标签,定义像素块内有相同标签的任意两个数据点之间的权重矩阵,然后将权重矩阵应用于NMF的目标函数中以构造出流形正则化约束项;第二,在目标函数中添加二次抛物线函数以完成稀疏约束;最后,采用乘法迭代更新法则求解目标函数以得到端元矩阵和丰度矩阵的求解公式,同时设置最大迭代次数和容忍误差阈值,迭代运算得到最终结果。该方法有效利用了高光谱图像的光谱和空间信息。实验结果表明,在模拟的高光谱数据中,与传统的流形稀疏约束的非负矩阵分解(GLNMF)、L1/2-NMF和顶点成分分析全约束最小二乘法(VCA-FCLS)等方法相比,MRS-NMF可以提高0.016~0.063的端元分解精度和0.01~0.05的丰度分解精度;而在真实的高光谱图像中,MRS-NMF较传统的GLNMF、顶点成分分析法(VCA)、最小体积约束的非负矩阵分解(MVCNMF)等方法可以平均提高0.001~0.0437的端元分解精度。所提MRS-NMF算法有效地提高了混合像元分解的精度,同时具有较好的抗噪性能。 展开更多
关键词 混合像元分解 非负矩阵分解 超像素分割 流形正则化 稀疏性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部