期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于分数阶优化的极限学习机交通流短时预测模型
1
作者 李卓轩 何桂仲 +1 位作者 卫一恒 曹进德 《控制理论与应用》 北大核心 2025年第6期1191-1199,共9页
在智能交通系统中,交通流预测在交通管理和减少拥堵方面发挥着关键作用.本文旨在开发一种高效、非迭代的神经网络方法用于交通流短时预测,该方法被称为改进分数阶极限学习机(IFra-ELM).通过分数岭回归算法,使得ELM算法在求解输出权重时... 在智能交通系统中,交通流预测在交通管理和减少拥堵方面发挥着关键作用.本文旨在开发一种高效、非迭代的神经网络方法用于交通流短时预测,该方法被称为改进分数阶极限学习机(IFra-ELM).通过分数岭回归算法,使得ELM算法在求解输出权重时具有更好的性能,该方法被称为分数极限学习机(Fra-ELM).在输入层之后添加改进分数阶累加层,将与原始输入进行拼接,增强了ELM算法的特征提取能力.通过改进分数阶累加层与分数极限学习机相结合,增强了模型对于不同场景下交通流的预测能力和鲁棒性.实验结果表明,与传统方法相比,IFraELM模型在交通流预测方面具有优越的性能.该框架有潜力提高交通预测系统的准确性和效率,有助于智能交通基础设施的发展. 展开更多
关键词 交通流预测 神经网络 分数阶累加 改进分数阶极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部