为评估区间通过能力下降对城市轨道交通网络可靠性和运输服务质量的影响,首先,以区间通过能力下降前后乘客的相对广义出行费用确定乘客的出行是否可靠,并以出行可靠的乘客占比评估网络的可靠性;其次,以乘客的平均广义出行费用评估网络...为评估区间通过能力下降对城市轨道交通网络可靠性和运输服务质量的影响,首先,以区间通过能力下降前后乘客的相对广义出行费用确定乘客的出行是否可靠,并以出行可靠的乘客占比评估网络的可靠性;其次,以乘客的平均广义出行费用评估网络的运输服务质量,采用基于改进Logit模型的随机用户均衡配流模型计算乘客的广义出行费用,并通过MSWA(method of successive weighted averages)算法求解该模型;然后,通过区间影响的乘客占比、区间介数分别识别网络的重要区间;最后,以武汉地铁为例分析重要区间通过能力下降后的网络可靠性和运输服务质量.仿真结果表明:受区间影响的乘客占比识别的重要区间对城市轨道交通网络的可靠性和运输服务质量产生重要影响;重要区间多与换乘站直接相连,并且各重要区间能影响网络中12.24%~13.96%的乘客;为保证武汉地铁网络可靠性高于0.95,网络最多能容忍区间介数识别的3个重要区间的能力下降20%,或区间影响的乘客占比识别的1个重要区间的能力下降20%;随着下降区间数目和下降比例的升高,网络的可靠性持续下降,但网络的运输服务质量下降的情况会有所减弱.展开更多
为改善视频监控中的背景建模方法对于前景目标物较多或者光线变化的复杂环境效果不太理想的缺陷,提出一种多级分块背景建模方法.该方法以间隔N帧帧差法为基础,采用多级分块,并结合对称二值模式(center-symmetric local binary pattern,C...为改善视频监控中的背景建模方法对于前景目标物较多或者光线变化的复杂环境效果不太理想的缺陷,提出一种多级分块背景建模方法.该方法以间隔N帧帧差法为基础,采用多级分块,并结合对称二值模式(center-symmetric local binary pattern,CSLBP)和码本(codebook,CB)等算法建立背景模型.通过模型得出背景较为清晰和完整,为下一步进行前景目标的准确识别提供良好基础.采用设计实验检验该方法的有效性,将其与局部二值模式(local binary pattern,LBP)、CSLBP、CB以及经典的混合高斯背景建模(mixture of Gaussian,MOG)等算法进行对比分析,得出采用此方法提取的前景目标物更加完整,边界更加清晰,且无明显分块图形出现.采用评分的方法对几种方法进行综合评分,该方法评分较高.在对前景目标物的提取方法中,该方法效果较好.展开更多
文摘为评估区间通过能力下降对城市轨道交通网络可靠性和运输服务质量的影响,首先,以区间通过能力下降前后乘客的相对广义出行费用确定乘客的出行是否可靠,并以出行可靠的乘客占比评估网络的可靠性;其次,以乘客的平均广义出行费用评估网络的运输服务质量,采用基于改进Logit模型的随机用户均衡配流模型计算乘客的广义出行费用,并通过MSWA(method of successive weighted averages)算法求解该模型;然后,通过区间影响的乘客占比、区间介数分别识别网络的重要区间;最后,以武汉地铁为例分析重要区间通过能力下降后的网络可靠性和运输服务质量.仿真结果表明:受区间影响的乘客占比识别的重要区间对城市轨道交通网络的可靠性和运输服务质量产生重要影响;重要区间多与换乘站直接相连,并且各重要区间能影响网络中12.24%~13.96%的乘客;为保证武汉地铁网络可靠性高于0.95,网络最多能容忍区间介数识别的3个重要区间的能力下降20%,或区间影响的乘客占比识别的1个重要区间的能力下降20%;随着下降区间数目和下降比例的升高,网络的可靠性持续下降,但网络的运输服务质量下降的情况会有所减弱.
文摘为改善视频监控中的背景建模方法对于前景目标物较多或者光线变化的复杂环境效果不太理想的缺陷,提出一种多级分块背景建模方法.该方法以间隔N帧帧差法为基础,采用多级分块,并结合对称二值模式(center-symmetric local binary pattern,CSLBP)和码本(codebook,CB)等算法建立背景模型.通过模型得出背景较为清晰和完整,为下一步进行前景目标的准确识别提供良好基础.采用设计实验检验该方法的有效性,将其与局部二值模式(local binary pattern,LBP)、CSLBP、CB以及经典的混合高斯背景建模(mixture of Gaussian,MOG)等算法进行对比分析,得出采用此方法提取的前景目标物更加完整,边界更加清晰,且无明显分块图形出现.采用评分的方法对几种方法进行综合评分,该方法评分较高.在对前景目标物的提取方法中,该方法效果较好.