期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响
被引量:
5
1
作者
黄发明
曾诗怡
+3 位作者
姚池
熊浩文
范宣梅
黄劲松
《工程科学与技术》
EI
CAS
CSCD
北大核心
2024年第1期169-182,共14页
滑坡易发性预测建模中如何选择非滑坡是影响建模结果的重要不确定因素。为研究不同非滑坡选择方式的影响规律,拟用5种方式,即全区随机、坡度低于5°区域、滑坡缓冲300 m外区域、信息量(IV)法、半监督法来选择出与滑坡等比例的非滑...
滑坡易发性预测建模中如何选择非滑坡是影响建模结果的重要不确定因素。为研究不同非滑坡选择方式的影响规律,拟用5种方式,即全区随机、坡度低于5°区域、滑坡缓冲300 m外区域、信息量(IV)法、半监督法来选择出与滑坡等比例的非滑坡样本;进一步将各选择方式与随机森林(RF)耦合构建随机RF、低坡度RF、缓冲区RF、IV–RF及半监督RF等模型。以江西南康区为例,获取高程、岩性、公路密度等19种环境因子和233个滑坡编录,将滑坡编录划分为2598个滑坡栅格单元构建上述耦合模型的输入–输出数据集。再采用预测精度和易发性指数分布等指标分析其建模不确定性。进一步针对耦合模型预测的滑坡易发性指数分布不合理等问题,在半监督RF建模时采用滑坡与非滑坡比例为1∶2的样本集开展建模并与1∶1等比例样本集工况作对比。结果表明:1)低坡度RF、缓冲区RF、IV–RF和半监督RF等模型的预测精度均大幅优于随机RF模型,可见准确选择非滑坡样本对易发性建模至关重要;2)半监督RF模型选择非滑坡样本的建模性能最优,且半监督RF在滑坡∶非滑坡=1∶2比其在1∶1时预测的易发性指数分布规律更准确可信。后续研究中有必要更深入探索滑坡与非滑坡样本的比例问题。
展开更多
关键词
滑坡易发性预测
非滑坡样本选择
半监督机器学习
信息量
随机森林
在线阅读
下载PDF
职称材料
基于多尺度分割方法的斜坡单元划分及滑坡易发性预测
被引量:
17
2
作者
常志璐
黄发明
+3 位作者
蒋水华
张崟琅
周创兵
黄劲松
《工程科学与技术》
EI
CSCD
北大核心
2023年第1期184-195,共12页
滑坡易发性预测可以有效预测潜在滑坡的空间位置,是滑坡危险性和风险性评价的基础。由于斜坡单元依据真实地形地貌划分和具有明确的地质特征意义,更多的学者尝试利用斜坡单元进行区域滑坡易发性预测。但是,如何高效准确地划分斜坡单元...
滑坡易发性预测可以有效预测潜在滑坡的空间位置,是滑坡危险性和风险性评价的基础。由于斜坡单元依据真实地形地貌划分和具有明确的地质特征意义,更多的学者尝试利用斜坡单元进行区域滑坡易发性预测。但是,如何高效准确地划分斜坡单元并考虑其内部环境因子的非均质性是制约斜坡单元应用的关键因素,也是目前研究中的难点。本文以江西省崇义县为例,首先,提取研究区域坡向和山体阴影图作为基础数据,采用多尺度分割(MSS)方法划分斜坡单元,并结合试错法和研究区域历史滑坡形态特征确定MSS方法的最优参数组合。然后,基于斜坡单元提取高程、坡度、剖面曲率等环境因子,分别导入支持向量机(SVM)和逻辑回归(LR)模型,构建Slope–SVM/LR易发性预测模型。通过变化值和标准差表征斜坡单元内部环境因子的非均质性,进而构建Variant Slope–SVM/LR易发性预测模型。最后,采用ROC曲线和频率比精度分析上述模型的预测精度。结果表明:1)当尺度、形状特征权重和紧致度权重参数分别取20、0.8和0.8时,研究区域斜坡单元的划分效果最好;2)Slope–SVM、Variant slope–SVM、Slope–LR和Variant slope–LR模型的ROC精度分别为0.812、0.876、0.818和0.839,相应的频率比精度分别为0.780、0.866、0.792和0.865,说明Variant slope–SVM/LR模型的预测精度高于Slope–SVM/LR模型。因此,MSS方法可以实现高效准确地自动划分斜坡单元,考虑斜坡单元内部环境因子的非均质性可以提高易发性预测结果的准确性。
展开更多
关键词
多尺度分割方法
斜坡单元
易发性预测
非均质性
在线阅读
下载PDF
职称材料
题名
滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响
被引量:
5
1
作者
黄发明
曾诗怡
姚池
熊浩文
范宣梅
黄劲松
机构
南昌
大学
工程
建设学院
成都理工
大学
地质灾害防治与地质环境保护国家重点实验室
纽卡斯尔大学岩土科学与工程卓越研究中心
出处
《工程科学与技术》
EI
CAS
CSCD
北大核心
2024年第1期169-182,共14页
基金
国家自然科学基金项目(41807285,42377164,42272326)。
文摘
滑坡易发性预测建模中如何选择非滑坡是影响建模结果的重要不确定因素。为研究不同非滑坡选择方式的影响规律,拟用5种方式,即全区随机、坡度低于5°区域、滑坡缓冲300 m外区域、信息量(IV)法、半监督法来选择出与滑坡等比例的非滑坡样本;进一步将各选择方式与随机森林(RF)耦合构建随机RF、低坡度RF、缓冲区RF、IV–RF及半监督RF等模型。以江西南康区为例,获取高程、岩性、公路密度等19种环境因子和233个滑坡编录,将滑坡编录划分为2598个滑坡栅格单元构建上述耦合模型的输入–输出数据集。再采用预测精度和易发性指数分布等指标分析其建模不确定性。进一步针对耦合模型预测的滑坡易发性指数分布不合理等问题,在半监督RF建模时采用滑坡与非滑坡比例为1∶2的样本集开展建模并与1∶1等比例样本集工况作对比。结果表明:1)低坡度RF、缓冲区RF、IV–RF和半监督RF等模型的预测精度均大幅优于随机RF模型,可见准确选择非滑坡样本对易发性建模至关重要;2)半监督RF模型选择非滑坡样本的建模性能最优,且半监督RF在滑坡∶非滑坡=1∶2比其在1∶1时预测的易发性指数分布规律更准确可信。后续研究中有必要更深入探索滑坡与非滑坡样本的比例问题。
关键词
滑坡易发性预测
非滑坡样本选择
半监督机器学习
信息量
随机森林
Keywords
landslide susceptibility prediction
non-landslide samples selection
semi-supervised machine learning
information value
random forest
分类号
P642.22 [天文地球—工程地质学]
在线阅读
下载PDF
职称材料
题名
基于多尺度分割方法的斜坡单元划分及滑坡易发性预测
被引量:
17
2
作者
常志璐
黄发明
蒋水华
张崟琅
周创兵
黄劲松
机构
南昌
大学
工程
建设学院
帕多瓦
大学
地质
科学
院
纽卡斯尔大学岩土科学与工程卓越研究中心
出处
《工程科学与技术》
EI
CSCD
北大核心
2023年第1期184-195,共12页
基金
国家自然科学基金项目(41807285,41972280,42272326,52222905,52179103)
江西省自然科学基金项目(20224ACB204019)。
文摘
滑坡易发性预测可以有效预测潜在滑坡的空间位置,是滑坡危险性和风险性评价的基础。由于斜坡单元依据真实地形地貌划分和具有明确的地质特征意义,更多的学者尝试利用斜坡单元进行区域滑坡易发性预测。但是,如何高效准确地划分斜坡单元并考虑其内部环境因子的非均质性是制约斜坡单元应用的关键因素,也是目前研究中的难点。本文以江西省崇义县为例,首先,提取研究区域坡向和山体阴影图作为基础数据,采用多尺度分割(MSS)方法划分斜坡单元,并结合试错法和研究区域历史滑坡形态特征确定MSS方法的最优参数组合。然后,基于斜坡单元提取高程、坡度、剖面曲率等环境因子,分别导入支持向量机(SVM)和逻辑回归(LR)模型,构建Slope–SVM/LR易发性预测模型。通过变化值和标准差表征斜坡单元内部环境因子的非均质性,进而构建Variant Slope–SVM/LR易发性预测模型。最后,采用ROC曲线和频率比精度分析上述模型的预测精度。结果表明:1)当尺度、形状特征权重和紧致度权重参数分别取20、0.8和0.8时,研究区域斜坡单元的划分效果最好;2)Slope–SVM、Variant slope–SVM、Slope–LR和Variant slope–LR模型的ROC精度分别为0.812、0.876、0.818和0.839,相应的频率比精度分别为0.780、0.866、0.792和0.865,说明Variant slope–SVM/LR模型的预测精度高于Slope–SVM/LR模型。因此,MSS方法可以实现高效准确地自动划分斜坡单元,考虑斜坡单元内部环境因子的非均质性可以提高易发性预测结果的准确性。
关键词
多尺度分割方法
斜坡单元
易发性预测
非均质性
Keywords
multi-scale segmentation method
slope unit
landslide susceptibility prediction
heterogeneity
分类号
P642.22 [天文地球—工程地质学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响
黄发明
曾诗怡
姚池
熊浩文
范宣梅
黄劲松
《工程科学与技术》
EI
CAS
CSCD
北大核心
2024
5
在线阅读
下载PDF
职称材料
2
基于多尺度分割方法的斜坡单元划分及滑坡易发性预测
常志璐
黄发明
蒋水华
张崟琅
周创兵
黄劲松
《工程科学与技术》
EI
CSCD
北大核心
2023
17
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部