期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GI-AMED的滚动轴承早期故障诊断 被引量:4
1
作者 崔奔 郭盼盼 张文斌 《轴承》 北大核心 2023年第3期63-67,共5页
针对滚动轴承早期故障信号受噪声干扰严重,特征频率难以提取的问题,提出了基于基尼系数(GI)和自适应最小熵解卷积(AMED)的滚动轴承早期故障诊断方法。首先,以基尼系数为指标对滚动轴承健康状态进行评估,得到轴承故障初始起点;然后,以模... 针对滚动轴承早期故障信号受噪声干扰严重,特征频率难以提取的问题,提出了基于基尼系数(GI)和自适应最小熵解卷积(AMED)的滚动轴承早期故障诊断方法。首先,以基尼系数为指标对滚动轴承健康状态进行评估,得到轴承故障初始起点;然后,以模糊熵为标准,通过步长迭代的方式对最小熵解卷积滤波器长度L进行寻优,用优化后的自适应最小熵解卷积对轴承信号进行自适应降噪处理;最后,对预处理信号进行包络谱分析并提取故障特征频率,完成滚动轴承早期故障诊断。试验结果表明,基尼系数能够比均方根值更早判定轴承运行趋势的异常点,AMED则能够克服人为经验选取参数的局限性,且能够得到更清晰的故障特征频率,从而有效实现滚动轴承早期故障诊断。 展开更多
关键词 滚动轴承 故障诊断 基尼系数 模糊熵 最小熵解卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部