剩余寿命(Remaining useful lifetime,RUL)估计是设备视情维护和预测与健康管理(Prognostics and health management,PHM)中的一项关键问题.采用退化过程建模进行剩余寿命估计的研究中,现有方法仅考虑了具有线性或可以线性化的退化轨迹...剩余寿命(Remaining useful lifetime,RUL)估计是设备视情维护和预测与健康管理(Prognostics and health management,PHM)中的一项关键问题.采用退化过程建模进行剩余寿命估计的研究中,现有方法仅考虑了具有线性或可以线性化的退化轨迹的问题.本文提出了一种基于扩散过程的非线性退化过程建模方法,在首达时间的意义下,推导出了剩余寿命的分布.该方法可以描述一般的非线性退化轨迹,现有的线性退化建模方法是其特例.在参数的推断中,考虑到真实的退化过程受到测量误差的影响,难以直接测量得到,因此,在退化建模的过程中引入了测量误差对退化观测数据的影响,通过观测数据,提出了一种退化模型未知参数的极大似然估计方法.最后,通过激光发生器和陀螺仪的退化测量数据验证了本文方法明显优于线性建模方法,具有潜在的工程应用价值.展开更多
文摘剩余寿命(Remaining useful lifetime,RUL)估计是设备视情维护和预测与健康管理(Prognostics and health management,PHM)中的一项关键问题.采用退化过程建模进行剩余寿命估计的研究中,现有方法仅考虑了具有线性或可以线性化的退化轨迹的问题.本文提出了一种基于扩散过程的非线性退化过程建模方法,在首达时间的意义下,推导出了剩余寿命的分布.该方法可以描述一般的非线性退化轨迹,现有的线性退化建模方法是其特例.在参数的推断中,考虑到真实的退化过程受到测量误差的影响,难以直接测量得到,因此,在退化建模的过程中引入了测量误差对退化观测数据的影响,通过观测数据,提出了一种退化模型未知参数的极大似然估计方法.最后,通过激光发生器和陀螺仪的退化测量数据验证了本文方法明显优于线性建模方法,具有潜在的工程应用价值.