A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial aco...A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.展开更多
针对变速控制力矩陀螺(variable speed control moment gyro,VSCMG)作为执行机构应用在敏捷遥感卫星上进行姿态机动时末端模式切换的平稳性和快速性冲突问题,在考虑框架转速误差的基础上,设计姿态误差参数作为切换指标,制定误差参数切...针对变速控制力矩陀螺(variable speed control moment gyro,VSCMG)作为执行机构应用在敏捷遥感卫星上进行姿态机动时末端模式切换的平稳性和快速性冲突问题,在考虑框架转速误差的基础上,设计姿态误差参数作为切换指标,制定误差参数切换区域内的过渡规则,将指令力矩实时分配给控制力矩陀螺(control moment gyro,CMG)和飞轮并分别求解,提出了一种控制力矩陀螺/反作用飞轮工作模式模糊平滑切换操纵律。为了使得姿态机动末端卫星姿态达到姿态稳定度和指向精度要求的时间更短,以该时间为优化指标提出聚类变异改进粒子群算法对该操纵律参数寻优,确定最佳的切换区域和切换参数,并进行了仿真验证。结果表明:改进后粒子群算法在相同的迭代次数中总是表现出比传统粒子群算法更优的适应度,具有更快的收敛速度和更高的收敛精度,参数优化后的模糊平滑切换操纵律相比于现有操纵律能够在较短时间内完成双模式的平滑切换,并在姿态机动末端更迅速地达到姿态稳定度和指向精度要求,提高了遥感卫星敏捷机动与高稳指向的控制性能,有利于高质量完成成像任务。展开更多
GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin ...GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin gain,acoustic mode number and peak intensity difference.When an optical fiber is used in optical fiber sensing or communication system,its BGS characteristics may play an important role in determining the performance of the system.In this paper,finite element analysis(FEA)method is used to study the influence of refractive index distribution and its corresponding AVP on the BGS in step-index,graded-index,and complex-index optical fibers.A new method has also been proposed to efficiently discriminate acoustic mode solution and obtain the new and full images of total Brillouin gain and acoustic modes number of the fiber as a function of the refractive index distribution,considering the influence of changing the refractive index difference and the geometric size simultaneously.For each type of optical fiber,the recommended parameter range is provided for optical fiber sensing and optical fiber communication.Moreover,the suitable optical fiber with close peak intensity in its multi-peak BGS is explored and achieved,which can be used in Brillouin beat spectrum detection systems to improve sensing accuracy.展开更多
We propose the trench-assisted multimode fiber(TA-OM4)as a novel sensing fiber in forward Brillouin scattering(FBS)-based temperature sensor,due to its higher temperature sensitivity,better bending resistance and lowe...We propose the trench-assisted multimode fiber(TA-OM4)as a novel sensing fiber in forward Brillouin scattering(FBS)-based temperature sensor,due to its higher temperature sensitivity,better bending resistance and lower propagation loss,compared with the single mode fiber(SMF)and other sensing fibers.The FBS effect and acousto-optic interaction in TA-OM4 are the first time to be demonstrated and characterized at 1550 nm theoretically and experimentally.A 2.0 km long TA-OM4 is put into an oven to measure its temperature sensitivity,which can reach up to 80.3 kHz/℃,exceeding 53%of SMF(52.4 kHz/℃).The simulated and experimental results verify that the TA-OM4 may be a good candidate as the sensing fiber for the FBS-based temperature sensor.展开更多
基金supported by the Na-tional Natural Science Foundation of China(Nos.62175105,61875086)Fundamental Research Funds for the Cen-tral Universities of China(No.ILB240041A24)。
文摘A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.
文摘针对变速控制力矩陀螺(variable speed control moment gyro,VSCMG)作为执行机构应用在敏捷遥感卫星上进行姿态机动时末端模式切换的平稳性和快速性冲突问题,在考虑框架转速误差的基础上,设计姿态误差参数作为切换指标,制定误差参数切换区域内的过渡规则,将指令力矩实时分配给控制力矩陀螺(control moment gyro,CMG)和飞轮并分别求解,提出了一种控制力矩陀螺/反作用飞轮工作模式模糊平滑切换操纵律。为了使得姿态机动末端卫星姿态达到姿态稳定度和指向精度要求的时间更短,以该时间为优化指标提出聚类变异改进粒子群算法对该操纵律参数寻优,确定最佳的切换区域和切换参数,并进行了仿真验证。结果表明:改进后粒子群算法在相同的迭代次数中总是表现出比传统粒子群算法更优的适应度,具有更快的收敛速度和更高的收敛精度,参数优化后的模糊平滑切换操纵律相比于现有操纵律能够在较短时间内完成双模式的平滑切换,并在姿态机动末端更迅速地达到姿态稳定度和指向精度要求,提高了遥感卫星敏捷机动与高稳指向的控制性能,有利于高质量完成成像任务。
基金supported by the National Natural Science Foundation of China(Nos.61875086,61377086)Aerospace Science Foundation of China(No.2016ZD52042)Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.kfjj20170801)。
文摘GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin gain,acoustic mode number and peak intensity difference.When an optical fiber is used in optical fiber sensing or communication system,its BGS characteristics may play an important role in determining the performance of the system.In this paper,finite element analysis(FEA)method is used to study the influence of refractive index distribution and its corresponding AVP on the BGS in step-index,graded-index,and complex-index optical fibers.A new method has also been proposed to efficiently discriminate acoustic mode solution and obtain the new and full images of total Brillouin gain and acoustic modes number of the fiber as a function of the refractive index distribution,considering the influence of changing the refractive index difference and the geometric size simultaneously.For each type of optical fiber,the recommended parameter range is provided for optical fiber sensing and optical fiber communication.Moreover,the suitable optical fiber with close peak intensity in its multi-peak BGS is explored and achieved,which can be used in Brillouin beat spectrum detection systems to improve sensing accuracy.
基金supported in part by the National Natural Foundation of China(Nos. 61875086, 61377086)the Aerospace Science Foundation of China (No.2016ZD52042)Nanjing University of Aeronautics and Astronautics Ph. D. short-term visiting scholar project (No.190901DF08)
文摘We propose the trench-assisted multimode fiber(TA-OM4)as a novel sensing fiber in forward Brillouin scattering(FBS)-based temperature sensor,due to its higher temperature sensitivity,better bending resistance and lower propagation loss,compared with the single mode fiber(SMF)and other sensing fibers.The FBS effect and acousto-optic interaction in TA-OM4 are the first time to be demonstrated and characterized at 1550 nm theoretically and experimentally.A 2.0 km long TA-OM4 is put into an oven to measure its temperature sensitivity,which can reach up to 80.3 kHz/℃,exceeding 53%of SMF(52.4 kHz/℃).The simulated and experimental results verify that the TA-OM4 may be a good candidate as the sensing fiber for the FBS-based temperature sensor.