差分隐私凭借其强大的隐私保护能力被应用在随机森林算法解决其中的隐私泄露问题,然而,直接将差分隐私应用在随机森林算法会使模型的分类准确率严重下降.为了平衡隐私保护和模型准确性之间的矛盾,提出了一种高效的差分隐私随机森林训练...差分隐私凭借其强大的隐私保护能力被应用在随机森林算法解决其中的隐私泄露问题,然而,直接将差分隐私应用在随机森林算法会使模型的分类准确率严重下降.为了平衡隐私保护和模型准确性之间的矛盾,提出了一种高效的差分隐私随机森林训练算法eDPRF(efficient differential privacy random forest).具体而言,该算法设计了决策树构建方法,通过引入重排翻转机制高效地查询输出优势,进一步设计相应的效用函数实现分裂特征以及标签的精准输出,有效改善树模型在扰动情况下对于数据信息的学习能力.同时基于组合定理设计了隐私预算分配的策略,通过不放回抽样获得训练子集以及差异化调整内部预算的方式提高树节点的查询预算.最后,通过理论分析以及实验评估,表明算法在给定相同隐私预算的情况下,模型的分类准确度优于同类算法.展开更多
近年来,工控网络发展势头迅猛.其数字化、智能化、自动化的优势为工业带来巨大效益的同时,也面临着愈发复杂多变的攻击威胁.在数据要素安全的背景下,及时发现和应对工控网络威胁成为一项迫切需要得到解决的任务.通过对工控网络中的数据...近年来,工控网络发展势头迅猛.其数字化、智能化、自动化的优势为工业带来巨大效益的同时,也面临着愈发复杂多变的攻击威胁.在数据要素安全的背景下,及时发现和应对工控网络威胁成为一项迫切需要得到解决的任务.通过对工控网络中的数据流进行连续监测和分析,工控网络威胁检测问题可以转化为时间序列异常检测问题.然而现有时间序列异常检测方法受限于工控网络数据集的质量,且往往仅对单一类型异常敏感而忽略其他异常.针对上述问题,提出了一种基于深度强化学习和数据增强的工控网络威胁检测方法(deep reinforcement learning and data augmentation based threat detection method in industrial control networks,DELTA).该方法提出了一种新的时序数据集数据增强选择方法,可以针对不同的基准模型选择合适的数据增强操作集以提升工控网络时间序列数据集的质量;同时使用深度强化学习算法(A2C/PPO)在不同时间点从基线模型中动态选取候选模型,以利用多种类型的异常检测模型解决单一类型异常敏感问题.与现有时间序列异常检测模型对比的实验结果表明,在付出可接受的额外时间消耗成本下,DELTA在准确率和F1值上比所有基线模型有明显的提升,验证了方法的有效性与实用性.展开更多
文摘差分隐私凭借其强大的隐私保护能力被应用在随机森林算法解决其中的隐私泄露问题,然而,直接将差分隐私应用在随机森林算法会使模型的分类准确率严重下降.为了平衡隐私保护和模型准确性之间的矛盾,提出了一种高效的差分隐私随机森林训练算法eDPRF(efficient differential privacy random forest).具体而言,该算法设计了决策树构建方法,通过引入重排翻转机制高效地查询输出优势,进一步设计相应的效用函数实现分裂特征以及标签的精准输出,有效改善树模型在扰动情况下对于数据信息的学习能力.同时基于组合定理设计了隐私预算分配的策略,通过不放回抽样获得训练子集以及差异化调整内部预算的方式提高树节点的查询预算.最后,通过理论分析以及实验评估,表明算法在给定相同隐私预算的情况下,模型的分类准确度优于同类算法.
文摘近年来,工控网络发展势头迅猛.其数字化、智能化、自动化的优势为工业带来巨大效益的同时,也面临着愈发复杂多变的攻击威胁.在数据要素安全的背景下,及时发现和应对工控网络威胁成为一项迫切需要得到解决的任务.通过对工控网络中的数据流进行连续监测和分析,工控网络威胁检测问题可以转化为时间序列异常检测问题.然而现有时间序列异常检测方法受限于工控网络数据集的质量,且往往仅对单一类型异常敏感而忽略其他异常.针对上述问题,提出了一种基于深度强化学习和数据增强的工控网络威胁检测方法(deep reinforcement learning and data augmentation based threat detection method in industrial control networks,DELTA).该方法提出了一种新的时序数据集数据增强选择方法,可以针对不同的基准模型选择合适的数据增强操作集以提升工控网络时间序列数据集的质量;同时使用深度强化学习算法(A2C/PPO)在不同时间点从基线模型中动态选取候选模型,以利用多种类型的异常检测模型解决单一类型异常敏感问题.与现有时间序列异常检测模型对比的实验结果表明,在付出可接受的额外时间消耗成本下,DELTA在准确率和F1值上比所有基线模型有明显的提升,验证了方法的有效性与实用性.