线性预测是时间序列分析中常用方法,针对传统一维线性预测谱估计算法只能估计信号源角度或信号频率问题,提出空时二维线性预测算法。采取对空时二维阵列接收到的数据进行数据抽取和排列,和对数据协方差矩阵进行重新构造的方法,求取空时...线性预测是时间序列分析中常用方法,针对传统一维线性预测谱估计算法只能估计信号源角度或信号频率问题,提出空时二维线性预测算法。采取对空时二维阵列接收到的数据进行数据抽取和排列,和对数据协方差矩阵进行重新构造的方法,求取空时二维线性预测权值并进行谱峰搜索。重点分析了空时二维的前向预测、后向预测和双向预测算法的原理,着重研究了构造的空时二维线性预测协方差矩阵的数据结构,讨论了前向、后向和双向预测的相互关系以及二维与一维的关系,并与空时二维最小方差算法、空时二维多重信号分类(multiple signal classification,MUSIC)算法进行了对比与分析。理论分析与仿真表明,一维空域、一维时域算法的前向、后向和双向预测为空时二维预测算法的特例,同时空时二维预测算法不仅克服了空时二维最小方差算法、空时二维MUSIC算法不能解相干信号源的缺点,还具有很好的测向测频能力。展开更多
相对于传统机载相控阵雷达单输入多输出(SIMO)体制,多输入多输出(MIMO)机载雷达中的空时自适应处理(STAP)技术可以获得杂波抑制和动目标检测性能的大幅提升。但是传统机载MIMO雷达空时自适应处理所需要的计算量和样本需求量巨大,无法满...相对于传统机载相控阵雷达单输入多输出(SIMO)体制,多输入多输出(MIMO)机载雷达中的空时自适应处理(STAP)技术可以获得杂波抑制和动目标检测性能的大幅提升。但是传统机载MIMO雷达空时自适应处理所需要的计算量和样本需求量巨大,无法满足非均匀杂波环境和实时性要求。为了解决这一问题,本文提出了一种机载MIMO雷达空时自适应杂波抑制方法(clutter suppression based on space time sampling matrix,CSBSM)。该方法利用了杂波协方差矩阵的低秩特性,基于空时采样矩阵构造杂波协方差矩阵,并通过空时滑窗处理对杂波功率进行估计,在非均匀杂波环境下CSBSM方法仅需要单个样本即可实现对杂波的有效抑制。同时,由于空时采样矩阵和独立采样点位置可离线计算,因此CSBSM方法的运算量较小,适用于极端非均匀杂波环境。计算机仿真结果验证了所提方法的有效性。展开更多
文摘线性预测是时间序列分析中常用方法,针对传统一维线性预测谱估计算法只能估计信号源角度或信号频率问题,提出空时二维线性预测算法。采取对空时二维阵列接收到的数据进行数据抽取和排列,和对数据协方差矩阵进行重新构造的方法,求取空时二维线性预测权值并进行谱峰搜索。重点分析了空时二维的前向预测、后向预测和双向预测算法的原理,着重研究了构造的空时二维线性预测协方差矩阵的数据结构,讨论了前向、后向和双向预测的相互关系以及二维与一维的关系,并与空时二维最小方差算法、空时二维多重信号分类(multiple signal classification,MUSIC)算法进行了对比与分析。理论分析与仿真表明,一维空域、一维时域算法的前向、后向和双向预测为空时二维预测算法的特例,同时空时二维预测算法不仅克服了空时二维最小方差算法、空时二维MUSIC算法不能解相干信号源的缺点,还具有很好的测向测频能力。
文摘相对于传统机载相控阵雷达单输入多输出(SIMO)体制,多输入多输出(MIMO)机载雷达中的空时自适应处理(STAP)技术可以获得杂波抑制和动目标检测性能的大幅提升。但是传统机载MIMO雷达空时自适应处理所需要的计算量和样本需求量巨大,无法满足非均匀杂波环境和实时性要求。为了解决这一问题,本文提出了一种机载MIMO雷达空时自适应杂波抑制方法(clutter suppression based on space time sampling matrix,CSBSM)。该方法利用了杂波协方差矩阵的低秩特性,基于空时采样矩阵构造杂波协方差矩阵,并通过空时滑窗处理对杂波功率进行估计,在非均匀杂波环境下CSBSM方法仅需要单个样本即可实现对杂波的有效抑制。同时,由于空时采样矩阵和独立采样点位置可离线计算,因此CSBSM方法的运算量较小,适用于极端非均匀杂波环境。计算机仿真结果验证了所提方法的有效性。