期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于麻雀搜索算法优化的BP神经网络模型对2型糖尿病肾病的预测研究
被引量:
6
1
作者
邹琼
吴曦
+2 位作者
张杨
万毅
陈长生
《中国全科医学》
北大核心
2024年第8期961-970,共10页
背景糖尿病肾病(DN)是糖尿病常见的微血管并发症之一,发病率高,危害性大。早期发现DN对预防相关疾病非常重要。目前大多研究基于传统的统计预测方法,数据需满足其所要求的前提假设条件。近年来已无法很好满足其在DN预测领域的需求,有必...
背景糖尿病肾病(DN)是糖尿病常见的微血管并发症之一,发病率高,危害性大。早期发现DN对预防相关疾病非常重要。目前大多研究基于传统的统计预测方法,数据需满足其所要求的前提假设条件。近年来已无法很好满足其在DN预测领域的需求,有必要尝试开展机器学习等新方法在DN预测领域的应用。目的利用LASSO回归和麻雀搜索算法(SSA)优化的BP神经网络(SSA-BP神经网络)构建DN预测模型。方法本研究时间为2023年4—8月,数据来源于公开的伊朗133例糖尿病患者的并发症数据。采用SPSS 26.0软件进行单因素分析,采用LASSO回归筛选变量。以是否患DN为因变量,分别用8∶2和7∶3的比例划分训练集和测试集,使用SSA-BP神经网络进行建模与分析,并与经典的机器学习模型对比预测性能以分析较优的DN模型。基于准确率、精确率、灵敏度、特异度、F1-score和受试者工作特征曲线下面积(AUC)指标进行模型评价。结果剔除9例1型糖尿病患者,本研究纳入的有效样本量为124例2型糖尿病(T2DM)患者,其中73例(58.9%)被诊断为DN患者。单因素分析显示年龄、BMI、糖尿病持续时间、空腹血糖(FBG)、糖化血红蛋白(HbA_(1c))、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、三酰甘油(TG)、收缩压(SBP)和舒张压(DBP)的T2DM患者DN危险因素(P<0.05)。训练集∶测试集=8∶2时,训练集(n=100)中有59例DN患者,测试集(n=24)含有14例DN患者。LASSO回归筛选出年龄、糖尿病持续时间、HbA_(1c)、LDL和SBP共5个影响因素。Logistic回归(LR)、K近邻(KNN)、支持向量机(SVM)、BP神经网络、SSA-BP神经网络模型在测试集的准确率分别为83.33%、79.17%、79.17%、87.50%、95.83%。F1-score分别为0.8462、0.8000、0.8000、0.8889、0.9600。训练集∶测试集=7∶3时,训练集(n=88)中有52例DN患者,测试集(n=36)含有21例DN患者。LASSO回归筛选出年龄、BMI、糖尿病持续时间、LDL、HDL、SBP和DBP这7个影响因素。LR、KNN、SVM、BP神经网络、SSA-BP神经网络模型在测试集的准确率分别为86.11%、86.11%、86.11%、72.22%、91.67%。F1-score分别为0.8718、0.8718、0.8649、0.7059、0.9091。结论LR、KNN和SVM模型在训练集∶测试集=7∶3时性能较好,BP神经网络和SSA-BP神经网络模型在训练集∶测试集=8∶2时性能较好。相较于BP神经网络模型和传统机器学习模型,SSA-BP神经网络模型的预测性能更佳,可及时准确识别T2DM DN患者,实现DN的早发现和早治疗,从而预防并减缓对其身体带来的危害。
展开更多
关键词
糖尿病
2型
糖尿病肾病
神经网络
计算机
预测模型
在线阅读
下载PDF
职称材料
题名
基于麻雀搜索算法优化的BP神经网络模型对2型糖尿病肾病的预测研究
被引量:
6
1
作者
邹琼
吴曦
张杨
万毅
陈长生
机构
空军军医大学军事预防医学系军队卫生统计学教研室、特殊作业环境危害评估与防治教育部重点实验室
陕西中医药
大学
公共
卫生
学院
空军
军医大学
卫勤训练基地
出处
《中国全科医学》
北大核心
2024年第8期961-970,共10页
基金
国家自然科学基金资助项目(82073663)。
文摘
背景糖尿病肾病(DN)是糖尿病常见的微血管并发症之一,发病率高,危害性大。早期发现DN对预防相关疾病非常重要。目前大多研究基于传统的统计预测方法,数据需满足其所要求的前提假设条件。近年来已无法很好满足其在DN预测领域的需求,有必要尝试开展机器学习等新方法在DN预测领域的应用。目的利用LASSO回归和麻雀搜索算法(SSA)优化的BP神经网络(SSA-BP神经网络)构建DN预测模型。方法本研究时间为2023年4—8月,数据来源于公开的伊朗133例糖尿病患者的并发症数据。采用SPSS 26.0软件进行单因素分析,采用LASSO回归筛选变量。以是否患DN为因变量,分别用8∶2和7∶3的比例划分训练集和测试集,使用SSA-BP神经网络进行建模与分析,并与经典的机器学习模型对比预测性能以分析较优的DN模型。基于准确率、精确率、灵敏度、特异度、F1-score和受试者工作特征曲线下面积(AUC)指标进行模型评价。结果剔除9例1型糖尿病患者,本研究纳入的有效样本量为124例2型糖尿病(T2DM)患者,其中73例(58.9%)被诊断为DN患者。单因素分析显示年龄、BMI、糖尿病持续时间、空腹血糖(FBG)、糖化血红蛋白(HbA_(1c))、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、三酰甘油(TG)、收缩压(SBP)和舒张压(DBP)的T2DM患者DN危险因素(P<0.05)。训练集∶测试集=8∶2时,训练集(n=100)中有59例DN患者,测试集(n=24)含有14例DN患者。LASSO回归筛选出年龄、糖尿病持续时间、HbA_(1c)、LDL和SBP共5个影响因素。Logistic回归(LR)、K近邻(KNN)、支持向量机(SVM)、BP神经网络、SSA-BP神经网络模型在测试集的准确率分别为83.33%、79.17%、79.17%、87.50%、95.83%。F1-score分别为0.8462、0.8000、0.8000、0.8889、0.9600。训练集∶测试集=7∶3时,训练集(n=88)中有52例DN患者,测试集(n=36)含有21例DN患者。LASSO回归筛选出年龄、BMI、糖尿病持续时间、LDL、HDL、SBP和DBP这7个影响因素。LR、KNN、SVM、BP神经网络、SSA-BP神经网络模型在测试集的准确率分别为86.11%、86.11%、86.11%、72.22%、91.67%。F1-score分别为0.8718、0.8718、0.8649、0.7059、0.9091。结论LR、KNN和SVM模型在训练集∶测试集=7∶3时性能较好,BP神经网络和SSA-BP神经网络模型在训练集∶测试集=8∶2时性能较好。相较于BP神经网络模型和传统机器学习模型,SSA-BP神经网络模型的预测性能更佳,可及时准确识别T2DM DN患者,实现DN的早发现和早治疗,从而预防并减缓对其身体带来的危害。
关键词
糖尿病
2型
糖尿病肾病
神经网络
计算机
预测模型
Keywords
Diabetes mellitus,type 2
Diabetic nephropathies
Neural networks,computer
Prediction model
分类号
R587.1 [医药卫生—内分泌]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于麻雀搜索算法优化的BP神经网络模型对2型糖尿病肾病的预测研究
邹琼
吴曦
张杨
万毅
陈长生
《中国全科医学》
北大核心
2024
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部