词汇简化是在不改变原句结构和语义的情况下,用更简单的词替换句子中的难词,提高文本面向特定群体读者的可读性。该文提出基于提示微调的汉语词汇简化方法PTCLS(Prompt-tuning Based Chinese Lexical Simplification)。PTCLS采用基于BAR...词汇简化是在不改变原句结构和语义的情况下,用更简单的词替换句子中的难词,提高文本面向特定群体读者的可读性。该文提出基于提示微调的汉语词汇简化方法PTCLS(Prompt-tuning Based Chinese Lexical Simplification)。PTCLS采用基于BART的底层架构,能够自然地生成不同字数的替代词,模型训练只需微调少量参数。在公开的汉语词汇简化数据集上的实验表明,该文提出的方法可以大幅超越目前最好的基线系统BERT-LS。深入分析揭示,微调方法只利用少量标注数据即可取得比全参数微调、手工提示和无监督方法更好的表现,尤其针对汉语同义词词典外的难词取得了更显著的性能提升。展开更多
现代语音合成和音色转换系统产生的虚假语音对自动说话人识别系统构成了严重威胁。大多数现有的虚假语音检测系统对在训练中已知的攻击类型表现良好,但对实际应用中的未知攻击类型检测效果显著降低。因此,结合最近提出的双路径Res2Net(D...现代语音合成和音色转换系统产生的虚假语音对自动说话人识别系统构成了严重威胁。大多数现有的虚假语音检测系统对在训练中已知的攻击类型表现良好,但对实际应用中的未知攻击类型检测效果显著降低。因此,结合最近提出的双路径Res2Net(DP-Res2Net),提出一种基于时域波形的半监督端到端虚假语音检测方法。首先,为了解决训练数据集和测试数据集两者数据分布差异较大的问题,采用半监督学习进行领域迁移;然后,对于特征工程,直接将时域采样点输入DP-Res2Net中,增加局部的多尺度信息,并充分利用音频片段之间的依赖性;最后,输入特征经过浅层卷积模块、特征融合模块、全局平均池化模块得到嵌入张量,用来判别自然语音与虚假伪造语音。在公开可用的ASVspoof 2021 Speech Deep Fake评估集和VCC数据集上评估了所提出方法的性能,实验结果表明它的等错误率(EER)为19.97%,与官方最优基线系统相比降低了10.8%。基于时域波形的半监督端到端检测虚假语音检测方法面对未知攻击时是有效的,且具有更高的泛化能力。展开更多
文摘词汇简化是在不改变原句结构和语义的情况下,用更简单的词替换句子中的难词,提高文本面向特定群体读者的可读性。该文提出基于提示微调的汉语词汇简化方法PTCLS(Prompt-tuning Based Chinese Lexical Simplification)。PTCLS采用基于BART的底层架构,能够自然地生成不同字数的替代词,模型训练只需微调少量参数。在公开的汉语词汇简化数据集上的实验表明,该文提出的方法可以大幅超越目前最好的基线系统BERT-LS。深入分析揭示,微调方法只利用少量标注数据即可取得比全参数微调、手工提示和无监督方法更好的表现,尤其针对汉语同义词词典外的难词取得了更显著的性能提升。
文摘现代语音合成和音色转换系统产生的虚假语音对自动说话人识别系统构成了严重威胁。大多数现有的虚假语音检测系统对在训练中已知的攻击类型表现良好,但对实际应用中的未知攻击类型检测效果显著降低。因此,结合最近提出的双路径Res2Net(DP-Res2Net),提出一种基于时域波形的半监督端到端虚假语音检测方法。首先,为了解决训练数据集和测试数据集两者数据分布差异较大的问题,采用半监督学习进行领域迁移;然后,对于特征工程,直接将时域采样点输入DP-Res2Net中,增加局部的多尺度信息,并充分利用音频片段之间的依赖性;最后,输入特征经过浅层卷积模块、特征融合模块、全局平均池化模块得到嵌入张量,用来判别自然语音与虚假伪造语音。在公开可用的ASVspoof 2021 Speech Deep Fake评估集和VCC数据集上评估了所提出方法的性能,实验结果表明它的等错误率(EER)为19.97%,与官方最优基线系统相比降低了10.8%。基于时域波形的半监督端到端检测虚假语音检测方法面对未知攻击时是有效的,且具有更高的泛化能力。