期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
个性化学情感知的智慧助教算法设计与实践 被引量:2
1
作者 董艳民 林佳佳 +6 位作者 张征 程程 吴金泽 王士进 黄振亚 刘淇 陈恩红 《计算机应用》 北大核心 2025年第3期765-772,共8页
随着大语言模型(LLM)的快速发展,基于LLM的对话助手逐渐成为学生学习的新方式。通过学生的问答互动,对话助手能生成相应的解答,从而帮助学生解决问题,并提高学习效率。然而,现有的对话助手忽略了学生的个性化需求,无法为学生提供个性化... 随着大语言模型(LLM)的快速发展,基于LLM的对话助手逐渐成为学生学习的新方式。通过学生的问答互动,对话助手能生成相应的解答,从而帮助学生解决问题,并提高学习效率。然而,现有的对话助手忽略了学生的个性化需求,无法为学生提供个性化的回答,实现“因材施教”。因此,提出一种基于学生能力感知的个性化对话助手框架。该框架包括2个主要模块:学生能力感知模块和个性化回答生成模块。能力感知模块通过分析学生的答题记录来挖掘学生的知识掌握程度,回答生成模块则根据学生的能力生成个性化回答。基于此框架,设计基于指令、基于小模型驱动和基于智能体Agent的3种实现范式,以深入探讨框架的实际效果。基于指令的对话助手利用LLM的推理能力,从学生的答题记录中挖掘知识掌握程度以帮助生成个性化回答;基于小模型驱动的对话助手利用深度知识追踪(DKT)模型生成学生的知识掌握程度;基于Agent的个性化对话助手采用LLM Agent的方式整合学生能力感知、个性化检测、答案修正等工具辅助答案的生成。基于ChatGLM(Chat General Language Model)、GPT4o_mini的对比实验结果表明,应用3种范式的LLM均能为学生提供个性化的回答,其中基于Agent的范式的准确度更高,表明该范式能更好地感知学生能力,并生成个性化回答。 展开更多
关键词 智慧教育 个性化对话助手 大语言模型 知识追踪 LLM智能体
在线阅读 下载PDF
基于要点匹配的文科主观题通用评分 被引量:3
2
作者 王士进 巩捷甫 +3 位作者 汪意发 宋巍 陈志刚 魏思 《中文信息学报》 CSCD 北大核心 2023年第6期165-178,共14页
主观题自动评分是智慧教育创新中的重要环节,逐步成为人工智能与教育行业领域交叉的热门方向之一。该文面向文科要点主观题,提出基于多任务学习的要点匹配评价模型:评估学生作答与标准答案各个要点之间的匹配等级,并抽取其中与要点相对... 主观题自动评分是智慧教育创新中的重要环节,逐步成为人工智能与教育行业领域交叉的热门方向之一。该文面向文科要点主观题,提出基于多任务学习的要点匹配评价模型:评估学生作答与标准答案各个要点之间的匹配等级,并抽取其中与要点相对应的具体片段,通过这两个任务的结果同时刻画学生对每个要点的掌握程度,并作为自动评分的关键特征;将要点匹配评价结果与文本相似度特征相结合,实现主观题作答自动评分,在无定标数据的通用评分场景下大幅提升了效果。对比实验证明了相比传统特征,基于要点匹配评价结果的特征在评分模型中更加重要。 展开更多
关键词 文科主观题 作答要点匹配评价 多任务训练 通用评分
在线阅读 下载PDF
基于多模态语义分析的试题推荐方法 被引量:3
3
作者 王士进 汪成成 +2 位作者 张丹 魏思 王渊 《中文信息学报》 CSCD 北大核心 2023年第5期165-172,共8页
在教育场景下,教育资源推荐是一项关键且基础的任务,教育资源呈现出显著的多源、异构和多模态特性,给教育资源的理解、应用带来了巨大的挑战。对此,该文提出了一种基于多模态语义分析的试题推荐方法:首先进行多模态教育资源的特征抽取... 在教育场景下,教育资源推荐是一项关键且基础的任务,教育资源呈现出显著的多源、异构和多模态特性,给教育资源的理解、应用带来了巨大的挑战。对此,该文提出了一种基于多模态语义分析的试题推荐方法:首先进行多模态教育资源的特征抽取以及不同模态数据之间的语义关联,构建多模态教育资源的理解表示框架;并利用相同领域任务进行多模态视频和试题特征的预训练,进行关联知识建模;最后,利用线上收集的数据进行视频-试题关联特征微调,得到更加鲁棒的特征表示,进行多模态教学视频的相关性试题推荐。在教育领域数据集上的实验结果表明,该文所提出的方法能有效提升现有方法的效果,具有很好的应用价值。 展开更多
关键词 教育资源 多模态 试题推荐
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部