期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
边界挖掘和背景引导的伪装目标检测
1
作者 李钟华 钟庚辛 +1 位作者 范萍 朱恒亮 《计算机应用》 北大核心 2025年第10期3328-3335,共8页
伪装目标与背景具有高度的相似性,极易受背景特征混淆,导致边界信息难以分辨且提取目标特征困难。目前主流的伪装目标检测(COD)算法主要针对性研究伪装目标本身及其边界行,忽略了图像背景与目标的相互关系,在复杂场景下的检测结果不理... 伪装目标与背景具有高度的相似性,极易受背景特征混淆,导致边界信息难以分辨且提取目标特征困难。目前主流的伪装目标检测(COD)算法主要针对性研究伪装目标本身及其边界行,忽略了图像背景与目标的相互关系,在复杂场景下的检测结果不理想。为了探索背景和目标的潜在联系,提出一种通过挖掘边界和背景检测伪装目标的算法——I2DNet(Indirect to Direct Network)。该算法由5个部分组成:编码器,处理初始原始数据;边界指导的特征提取和挖掘框架,通过特征处理和特征挖掘提取更多精细的边界特征;背景引导的潜在特征学习框架,通过多尺度卷积探索更多的显著特征,同时基于注意力设计混合注意力模块(HAM),增强对背景特征的强化选择;信息补偿模块(ISM),弥补在特征处理过程中损失的细节信息;多任务协同分割解码器(MCD)则高效融合不同任务和模块提取的特征,并输出最终的预测结果。在广泛使用的3个数据集上的实验结果表明,所提算法优于其他15个先进模型,尤其在CAMO数据集上的平均绝对误差指标下降至0.042。 展开更多
关键词 伪装目标检测 反向引导 多尺度卷积 注意力机制 特征聚合
在线阅读 下载PDF
基于分组卷积的通道重洗注意力机制 被引量:1
2
作者 张李伟 梁泉 +1 位作者 胡禹涛 朱乔乐 《计算机应用》 北大核心 2025年第4期1069-1076,共8页
注意力机制的引入使得主干网能够学习更具区分性的特征表示。然而,为了控制注意力的复杂度,传统的注意力机制采用的通道降维或减少通道数而增加批量大小的策略会导致过度减少通道数和损失重要特征信息的问题。为解决这一问题,提出通道... 注意力机制的引入使得主干网能够学习更具区分性的特征表示。然而,为了控制注意力的复杂度,传统的注意力机制采用的通道降维或减少通道数而增加批量大小的策略会导致过度减少通道数和损失重要特征信息的问题。为解决这一问题,提出通道重洗注意力(CSA)模块。首先,利用分组卷积学习注意力权重,以控制CSA的复杂度;其次,通过传统通道重洗和深层通道重洗(DCS)方法,增强不同组间的通道特征信息交流;再次,使用逆通道重洗恢复注意力权重的顺序;最后,将恢复后的注意力权重与原始特征图相乘,以获得更具表达能力的特征图。实验结果表明,在CIFAR-100数据集上,与添加CA(Coordinate Attention)的ResNet50相比,添加CSA的ResNet50的参数量降低了2.3%,Top-1准确率提升了0.57个百分点;与添加EMA(Efficient Multi-scale Attention)的ResNet50相比,添加CSA的ResNet50的计算量降低了18.4%,Top-1准确率提升了0.27个百分点。在COCO2017数据集上,添加CSA的YOLOv5s比添加CA和EMA的YOLOv5s在平均精度均值(mAP@50)上分别提升了0.5和0.2个百分点。可见,CSA达到了参数量和计算量的平衡,并能够同时提升图像分类任务的准确率和目标检测任务的定位能力。 展开更多
关键词 注意力机制 分组卷积 通道重洗 图像分类 目标检测
在线阅读 下载PDF
融合局部和全局相关性的多变量时间序列预测方法
3
作者 王翔 陈志祥 毛国君 《计算机应用》 北大核心 2025年第9期2806-2816,共11页
为解决现有时间序列模型未能充分融合局部和全局依赖的问题,提出一种融合局部和全局相关性的多变量时间序列预测方法PatchLG(Patch-integrated Local-Global correlation method)。该方法基于3个关键部分:1)将时间序列划分为多个子序列(... 为解决现有时间序列模型未能充分融合局部和全局依赖的问题,提出一种融合局部和全局相关性的多变量时间序列预测方法PatchLG(Patch-integrated Local-Global correlation method)。该方法基于3个关键部分:1)将时间序列划分为多个子序列(Patch),在保持时间序列的局部性的同时使模型更易于提取全局依赖;2)使用深度可分离卷积和自注意力机制建模局部和全局相关性;3)将时间序列分解为趋势项与季节项2个部分同时进行预测,并将预测结果组合起来得到最终预测结果。在7个基准数据集上的实验结果表明,PatchLG相较于最优基线方法PatchTST(Patch Time Series Transformer)在均方误差(MSE)和平均绝对误差(MAE)2个指标上平均改进量为3.0%和2.9%,同时具有较短的实际运行时间和较低的内存消耗,验证了PatchLG在时间序列预测中的有效性。 展开更多
关键词 时间序列 多变量时间序列预测 深度可分离卷积 自注意力机制 局部与全局依赖
在线阅读 下载PDF
融合多狩猎协调策略的爬行动物搜索算法 被引量:4
4
作者 力尚龙 刘建华 贾鹤鸣 《计算机应用》 CSCD 北大核心 2024年第9期2818-2828,共11页
爬行动物搜索算法(RSA)具有较强的全局探索能力,但开发能力相对薄弱,在迭代后期无法较好地收敛。针对上述问题,综合教与学优化(TLBO)算法、二次插值的天牛须搜索(BAS)算法和透镜成像反向学习策略,提出一种融合多狩猎协调策略的爬行动物... 爬行动物搜索算法(RSA)具有较强的全局探索能力,但开发能力相对薄弱,在迭代后期无法较好地收敛。针对上述问题,综合教与学优化(TLBO)算法、二次插值的天牛须搜索(BAS)算法和透镜成像反向学习策略,提出一种融合多狩猎协调策略的爬行动物搜索算法(MHCS-RSA)。MHCS-RSA保留了RSA包围阶段(全局探索)和狩猎阶段(局部开发)中狩猎合作的位置更新公式,在狩猎阶段,将狩猎协调融合TLBO算法的学习阶段和二次插值的BAS进行位置更新,以增强算法的开发能力和收敛能力;此外,引入透镜成像反向学习策略以增强算法跳出局部最优的能力。在CEC 2020测试函数上的实验结果表明,MHCS-RSA具有良好的寻优能力、收敛能力以及鲁棒性。最后通过对拉力/压力弹簧设计问题和减速器设计问题的求解,进一步验证了MHCS-RSA求解实际问题的有效性。 展开更多
关键词 爬行动物搜索算法 教与学优化算法 二次插值的天牛须搜索算法 透镜成像反向学习 工程问题求解
在线阅读 下载PDF
融合强关联依赖和简洁语法的方面级情感分析模型 被引量:2
5
作者 柯添赐 刘建华 +2 位作者 孙水华 郑智雄 蔡子杰 《计算机应用》 CSCD 北大核心 2024年第6期1786-1795,共10页
针对语法依赖树存在多个方面词相互干扰的依赖信息、无效单词,以及标点符号带来的冗余信息和方面词与对应情感词之间的关联性较弱等问题,提出一种融合强关联依赖和简洁语法的方面级情感分析模型(SADCS)。首先,构建情感词性(POS)列表,通... 针对语法依赖树存在多个方面词相互干扰的依赖信息、无效单词,以及标点符号带来的冗余信息和方面词与对应情感词之间的关联性较弱等问题,提出一种融合强关联依赖和简洁语法的方面级情感分析模型(SADCS)。首先,构建情感词性(POS)列表,通过该列表加强方面词与对应情感的相关性;其次,构建融合POS和依赖关系的联合列表,通过该联合列表去除已优化的依赖树无效单词与标点符号的冗余信息;再次,将优化后的依赖树与图注意力网络(GAT)结合建模提取上下文特征;最后,与依赖关系类型的特征信息进行交互学习并融合特征,增强特征表示,最终使分类器能高效预测每个方面词的情感极性。将所提模型在4个公开数据集上进行实验分析,与DMF-GAT-BERT(Dynamic Multichannel Fusion mechanism based on the GAT and BERT(Bidirectional Encoder Representations from Transformers))模型相比,所提模型的准确率分别提高了1.48、1.81、0.09和0.44个百分点。实验结果表明,所提模型能够有效增强方面词与情感词的联系,使方面词情感极性的预测更准确。 展开更多
关键词 方面级情感分析 依赖关系 词性 语法依赖树 图注意力网络
在线阅读 下载PDF
面向异构多背包问题的多级二进制帝国竞争算法 被引量:1
6
作者 李斌 唐志斌 《计算机应用》 CSCD 北大核心 2023年第9期2855-2867,共13页
在传统多背包问题的基础上,从典型物流服务场景中共性抽象出异构多背包问题(HMKP),并设计和定制了一种帝国竞争算法(ICA)对HMKP进行求解和评估。针对原始ICA易陷入局部最优以及0-1背包问题最优解往往在约束边界周围的特点,设计了双点自... 在传统多背包问题的基础上,从典型物流服务场景中共性抽象出异构多背包问题(HMKP),并设计和定制了一种帝国竞争算法(ICA)对HMKP进行求解和评估。针对原始ICA易陷入局部最优以及0-1背包问题最优解往往在约束边界周围的特点,设计了双点自变异策略(TPAS)和跳出局部最优算法(JLOA)对ICA进行改进,提出面向0-1背包问题的二进制帝国竞争算法(BICA)。BICA在求解35个0-1背包问题算例时展现出了全面、高效的寻优能力,基于最佳匹配值法(BMV)的BICA在第一组测试集的20个算例上能对19个算例100%找到理想最优值,在第二组测试集的15个算例上能对12个算例100%找到理想最优值,在所有对比算法中表现最优。数值结果分析表明,BICA在寻优演化中维持多极发展策略,并依托独特的种群进化方式在解空间中高效搜索理想解。在此基础上,针对HMKP强约束性和高复杂度的特性,基于BICA设计了求解HMKP的多级二进制帝国竞争算法(MLB-ICA)。分别在多个典型0-1背包问题算例组合构建的HMKP高维测试集上进行了MLB-ICA的数值实验和性能评估,结果表明虽然MLB-ICA的求解时间比Gurobi长,但求解精度提高了28%。可见,MLB-ICA能以较低的计算代价在可接受的时间范围内高效求解高维复杂的HMKP,为ICA在超大规模组合优化问题中的求解提出了可行的算法设计方案。 展开更多
关键词 0-1背包问题 异构多背包问题 帝国竞争算法 局部搜索策略 跳出局部最优机制 多级计算架构
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部