运动想象是基于脑电图信号构造脑机接口的重要手段之一,当前主流方法依赖于单任务的特征提取方法或卷积神经网络模型,无法同时兼顾时空、频段特征的复杂变化。为此,提出一种基于多任务卷积神经网络的运动想象脑电解码方法。该模型包含...运动想象是基于脑电图信号构造脑机接口的重要手段之一,当前主流方法依赖于单任务的特征提取方法或卷积神经网络模型,无法同时兼顾时空、频段特征的复杂变化。为此,提出一种基于多任务卷积神经网络的运动想象脑电解码方法。该模型包含时空特征提取任务和频段提取任务;采用卷积操作分别提取时域、空域特征,以及小波卷积提取深度频段特征;最终构建多任务目标函数优化卷积神经网络模型,实现多种特征类型的互补。在BCI Competition IV 2a和2b公开数据集上的实验结果表明,与现有单任务方法或模型相比,所提出的新模型提高了脑电特征学习能力,在两个数据集上分别获得了84.7%和80.6%的平均分类准确率,提升了运动想象解码性能。展开更多
区块链面临可拓展性问题.分片通过将区块链网络划分成多个子网络,并行处理交易,从而提升系统性能.但分片易导致恶意节点聚集,发动51%攻击,影响系统安全,现有的单维信誉方案存在重分配过程开销大和分片间共识不足的问题,性能与安全无法保...区块链面临可拓展性问题.分片通过将区块链网络划分成多个子网络,并行处理交易,从而提升系统性能.但分片易导致恶意节点聚集,发动51%攻击,影响系统安全,现有的单维信誉方案存在重分配过程开销大和分片间共识不足的问题,性能与安全无法保证.针对上述问题,提出基于多维信誉的区块链安全分片方案.首先,综合节点多维指标,保证分片信誉与计算通信能力均衡,识别恶意节点.其次,提出双阶段重分配方案,通过第1阶段部分重分配和第2阶段全部重分配,减少重分配频次,降低开销.最后,设计基于多维信誉的快速拜占庭容错共识(multi-dimensional reputation based fastByzantinefault-tolerantconsensus,MRFBFT),将投票权与信誉结合,并在分片领导节点间增设一次共识,防止恶意行为.实验结果表明,各分片信誉和计算通信水平更均衡,共识时延大约降低20%,吞吐量提升15%左右.展开更多
预训练模型容易受到外部敌手实施的模型微调和模型剪枝等攻击,导致它的完整性被破坏。针对这一问题,提出一种针对黑盒模型的脆弱指纹框架FFWAS(Fragile Fingerprint With Adversarial Samples)。首先,提出一种无先验知识的模型复制框架,...预训练模型容易受到外部敌手实施的模型微调和模型剪枝等攻击,导致它的完整性被破坏。针对这一问题,提出一种针对黑盒模型的脆弱指纹框架FFWAS(Fragile Fingerprint With Adversarial Samples)。首先,提出一种无先验知识的模型复制框架,而FFWAS为每一位用户创建独立的模型副本;其次,利用黑盒方法在模型边界放置脆弱指纹触发集,若模型发生修改,边界发生变化,触发集将被错误分类;最后,用户借助模型副本上的脆弱指纹触发集对模型的完整性进行验证,若触发集的识别率低于预设阈值,则意味着模型完整性已被破坏。基于2种公开数据集MNIST和CIFAR-10对FFWAS的有效性和脆弱性进行实验分析,结果表明,在模型微调和剪枝攻击下,FFWAS的指纹识别率相较于完整模型均明显下降并低于设定阈值;与基于模型唯一性和脆弱签名的深度神经网络认证框架(DeepAuth)相比,FFWAS的触发集与原始样本在2个数据集上的相似性分别提高了约22%和16%,表明FFWAS具有更好的隐蔽性。展开更多
文摘运动想象是基于脑电图信号构造脑机接口的重要手段之一,当前主流方法依赖于单任务的特征提取方法或卷积神经网络模型,无法同时兼顾时空、频段特征的复杂变化。为此,提出一种基于多任务卷积神经网络的运动想象脑电解码方法。该模型包含时空特征提取任务和频段提取任务;采用卷积操作分别提取时域、空域特征,以及小波卷积提取深度频段特征;最终构建多任务目标函数优化卷积神经网络模型,实现多种特征类型的互补。在BCI Competition IV 2a和2b公开数据集上的实验结果表明,与现有单任务方法或模型相比,所提出的新模型提高了脑电特征学习能力,在两个数据集上分别获得了84.7%和80.6%的平均分类准确率,提升了运动想象解码性能。
文摘区块链面临可拓展性问题.分片通过将区块链网络划分成多个子网络,并行处理交易,从而提升系统性能.但分片易导致恶意节点聚集,发动51%攻击,影响系统安全,现有的单维信誉方案存在重分配过程开销大和分片间共识不足的问题,性能与安全无法保证.针对上述问题,提出基于多维信誉的区块链安全分片方案.首先,综合节点多维指标,保证分片信誉与计算通信能力均衡,识别恶意节点.其次,提出双阶段重分配方案,通过第1阶段部分重分配和第2阶段全部重分配,减少重分配频次,降低开销.最后,设计基于多维信誉的快速拜占庭容错共识(multi-dimensional reputation based fastByzantinefault-tolerantconsensus,MRFBFT),将投票权与信誉结合,并在分片领导节点间增设一次共识,防止恶意行为.实验结果表明,各分片信誉和计算通信水平更均衡,共识时延大约降低20%,吞吐量提升15%左右.
文摘预训练模型容易受到外部敌手实施的模型微调和模型剪枝等攻击,导致它的完整性被破坏。针对这一问题,提出一种针对黑盒模型的脆弱指纹框架FFWAS(Fragile Fingerprint With Adversarial Samples)。首先,提出一种无先验知识的模型复制框架,而FFWAS为每一位用户创建独立的模型副本;其次,利用黑盒方法在模型边界放置脆弱指纹触发集,若模型发生修改,边界发生变化,触发集将被错误分类;最后,用户借助模型副本上的脆弱指纹触发集对模型的完整性进行验证,若触发集的识别率低于预设阈值,则意味着模型完整性已被破坏。基于2种公开数据集MNIST和CIFAR-10对FFWAS的有效性和脆弱性进行实验分析,结果表明,在模型微调和剪枝攻击下,FFWAS的指纹识别率相较于完整模型均明显下降并低于设定阈值;与基于模型唯一性和脆弱签名的深度神经网络认证框架(DeepAuth)相比,FFWAS的触发集与原始样本在2个数据集上的相似性分别提高了约22%和16%,表明FFWAS具有更好的隐蔽性。