工业物联网(Industrial Internet of Things,IIoT)是物联网(Internet of Things,IoT)在制造系统中的实现,随着它的快速发展,许多应用需要处理来自分布式终端设备的大量数据,以确保工业物联网的系统性能.本文从工业物联网应用管理者的角...工业物联网(Industrial Internet of Things,IIoT)是物联网(Internet of Things,IoT)在制造系统中的实现,随着它的快速发展,许多应用需要处理来自分布式终端设备的大量数据,以确保工业物联网的系统性能.本文从工业物联网应用管理者的角度出发,考虑工业物联网应用需要及时响应,组件需要处理敏感数据的特点,提出在应用允许最大响应时间,隐私保护和数据中心资源限制的约束下,优化云边环境中工业物联网应用的组件部署代价.本文提出了基于遗传算法(Genetic Algorithm,GA)和粒子群优化算法(Particle Swarm Optimization,PSO)的多应用部署算法(Multi Application Deployment Algorithm based on GA and PSO,MADPG)来得到应用组件的部署策略.该算法基于粒子群算法设计了数据中心与组件相映射的编码方式,在粒子进化过程中动态的改变相关学习因子并使用遗传和变异两种操作来提高算法的局部和全局搜索能力.仿真实验表明,与其他策略相比,基于MADPG的部署策略能够在满足工业物联网应用的约束下有效降低工业物联网应用的组件部署代价.展开更多
为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级...为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。展开更多
文摘工业物联网(Industrial Internet of Things,IIoT)是物联网(Internet of Things,IoT)在制造系统中的实现,随着它的快速发展,许多应用需要处理来自分布式终端设备的大量数据,以确保工业物联网的系统性能.本文从工业物联网应用管理者的角度出发,考虑工业物联网应用需要及时响应,组件需要处理敏感数据的特点,提出在应用允许最大响应时间,隐私保护和数据中心资源限制的约束下,优化云边环境中工业物联网应用的组件部署代价.本文提出了基于遗传算法(Genetic Algorithm,GA)和粒子群优化算法(Particle Swarm Optimization,PSO)的多应用部署算法(Multi Application Deployment Algorithm based on GA and PSO,MADPG)来得到应用组件的部署策略.该算法基于粒子群算法设计了数据中心与组件相映射的编码方式,在粒子进化过程中动态的改变相关学习因子并使用遗传和变异两种操作来提高算法的局部和全局搜索能力.仿真实验表明,与其他策略相比,基于MADPG的部署策略能够在满足工业物联网应用的约束下有效降低工业物联网应用的组件部署代价.
文摘为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。