期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于双向自适应门控图卷积网络的交通流预测 被引量:5
1
作者 贺文武 裴博彧 +2 位作者 李雅婷 刘小雨 徐少兵 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第1期187-197,共11页
针对路网交通流时空依赖上的高度复杂性以及数据污染的现实性,基于图神经网络构建一种新型时空融合交通流预测模型。考虑交通流数据中的缺失、异常与噪声,模型首先对数据进行特征重构与融合,在保持时序特性的前提下,以滑动时间窗口平滑... 针对路网交通流时空依赖上的高度复杂性以及数据污染的现实性,基于图神经网络构建一种新型时空融合交通流预测模型。考虑交通流数据中的缺失、异常与噪声,模型首先对数据进行特征重构与融合,在保持时序特性的前提下,以滑动时间窗口平滑交通流特征信息,做好数据准备。考虑交通流的实际有向性,主体模型采用正、反双路网络设计以分向学习交通流时空特征的有效表示。双路网络结构相同,以轻量有效的因果卷积作为模型的时序特征提取器,以多层自适应门控图卷积神经网络作为模型组件提取空间特征,实现信息的自适应聚合与传播,再通过纵向信息聚合层轻量化地实现不同局部视野下的信息融合,基于注意力有效权衡两路网络的信息贡献并将其聚合,建立双向自适应门控图卷积网络交通流预测模型。在真实交通流基准数据集PEMS03、PEMS04、PEMS07和PEMS08上进行模型的有效性验证,结果表明,所建模型在4个数据集上3个预测精度指标均优于基线模型。同时,相较于最先进的基线模型时空同步图卷积网络与时空融合图神经网络,所建模型能以数倍甚至数十倍比例的参数轻量化与低训练时间代价获得更高的预测精度。 展开更多
关键词 智能交通 自适应门控 图卷积 双向图网络 特征融合 纵向层间聚合
在线阅读 下载PDF
融合迭代和问题维度的速度约束粒子群算法 被引量:3
2
作者 王子航 刘建华 +2 位作者 薛醒思 朱剑 陈宇翔 《华东交通大学学报》 2023年第4期112-126,共15页
粒子群算法广泛应用于工程、科学与管理等领域实际问题中的复杂优化问题求解,设计新的策略以应对算法的性能和效率瓶颈是该领域的研究热点。针对传统粒子群算法速度约束策略比较单一,容易导致算法收敛速度慢,性能低等问题,提出一种融合... 粒子群算法广泛应用于工程、科学与管理等领域实际问题中的复杂优化问题求解,设计新的策略以应对算法的性能和效率瓶颈是该领域的研究热点。针对传统粒子群算法速度约束策略比较单一,容易导致算法收敛速度慢,性能低等问题,提出一种融合算法迭代和问题维度的速度约束策略。通过分析算法种群进化状态评估值与迭代次数及问题维度的关系,设计计算进化状态评估值的公式,使其受算法迭代次数和问题维度影响,最后根据进化状态评估值计算算法的速度约束范围,得到一种融合迭代和问题维度的速度约束粒子群算法。新的速度约束策略使粒子群算法的种群状态受到迭代次数和问题维度的影响,具有自适应性,并对不同维度问题求解具有扩展性,提高了粒子群算法的收敛速度和求解精度,仿真实验证明了算法的有效性。 展开更多
关键词 粒子群优化算法 速度约束策略 进化状态预估 迭代次数 问题维度
在线阅读 下载PDF
基于剪边策略的图残差卷积深层网络模型 被引量:1
3
作者 毛国君 王者浩 +1 位作者 黄山 王翔 《电子学报》 EI CAS CSCD 北大核心 2022年第9期2205-2214,共10页
图神经网络自2005年以来已经逐步成为图学习中的一个重要的研究分支,其中最为活跃的是图卷积神经网络.由于图数据在现实世界中广泛存在,因此有效地完成图结构数据的学习具有很大的应用前景.目前出现的大多数图卷积神经网络模型基本都是... 图神经网络自2005年以来已经逐步成为图学习中的一个重要的研究分支,其中最为活跃的是图卷积神经网络.由于图数据在现实世界中广泛存在,因此有效地完成图结构数据的学习具有很大的应用前景.目前出现的大多数图卷积神经网络模型基本都是浅层结构,过平滑问题成为制约该领域发展的瓶颈问题.本文提出了一种称为dri-GCN(Graph Convolutional Network via dropedge,residual and identity mapping)的图残差卷积深层网络模型,该模型集成了图剪边、初始残差和恒等映射技术.主要思想包括:利用图剪边技术增加学习数据的多样性,以防止学习过程中的过拟合现象;构建恒等映射下的初始残差网络,来扩展残差单元的学习路径,以削弱学习过程中的过平滑问题.实验结果表明,本文提出的dri-GCN模型可以帮助构建深层图卷积神经网络,通过网络层次的加深可以获得优于浅层网络的学习准确率. 展开更多
关键词 图神经网络 图卷积神经网络 剪边 残差
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部