期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
天气因素对福州地铁客流的影响分析 被引量:4
1
作者 江世雄 蔡灿煌 +1 位作者 林宇晨 陈德旺 《交通运输系统工程与信息》 EI CSCD 北大核心 2021年第3期268-274,共7页
地铁作为一种绿色出行方式,是缓解城市交通拥堵的重要手段。地铁客流受到多种因素影响,其中天气因素变化较快,会造成地铁客流的快速变化。了解天气因素对地铁客流的影响,有助于建立相应的运输组织响应措施。本文旨在量化分析天气因素对... 地铁作为一种绿色出行方式,是缓解城市交通拥堵的重要手段。地铁客流受到多种因素影响,其中天气因素变化较快,会造成地铁客流的快速变化。了解天气因素对地铁客流的影响,有助于建立相应的运输组织响应措施。本文旨在量化分析天气因素对福州地铁客流量的影响,并考虑原始天气指标的局限性,引入体现舒适度的指标。建立地铁客流与天气因素(包括气压、相对湿度、风力、降水、风寒指数等级、综合舒适度指数等级等)之间的多元线性回归模型,量化影响方向和影响程度。此外,工作日与非工作日的客流模式差异较大,将两者分别建模分析。研究发现:工作日,降水、风寒指数等级和综合舒适度指数等级对地铁客流有显著影响;非工作日,降水、气压、相对湿度、风寒指数等级和综合舒适度指数等级对地铁客流有显著影响。总体而言,非工作日地铁客流对天气因素更加敏感。 展开更多
关键词 城市交通 天气因素 多元线性回归 地铁客流 舒适度指数 降水
在线阅读 下载PDF
基于粒子群优化与宽度学习系统的地铁客流预测模型 被引量:1
2
作者 付建广 尤斌 +1 位作者 林毅 陈德旺 《城市轨道交通研究》 北大核心 2023年第5期23-26,33,共5页
为了提高地铁客流量预测的准确性,基于传统的PSO(粒子群优化)算法与BLS (宽度学习系统),提出一种新的地铁客流预测模型,即PSO-BLS算法。首先,对地铁站点的繁华程度、前一时段进站量、前一时段出站量及前一时段断面客流量等参数进行分析... 为了提高地铁客流量预测的准确性,基于传统的PSO(粒子群优化)算法与BLS (宽度学习系统),提出一种新的地铁客流预测模型,即PSO-BLS算法。首先,对地铁站点的繁华程度、前一时段进站量、前一时段出站量及前一时段断面客流量等参数进行分析,并根据分析结果提出需要根据工作日和双休日分别对地铁客流量进行预测。其次,利用PSO算法对BLS的特征层偏置进行优化。最后,以福州地铁1号线AFC(自动售检票)系统中记录的大量乘客出行数据为例,对所提PSO-BLS算法进行验证。验证结果表明:与传统的地铁客流量预测算法BP(反向传播)神经网络和ELM(极限学习机)相比,PSO-BLS算法获得的计算结果在多项性能指标中均取得了较优异的表现;对BLS的特征层偏置进行优化可以提高BLS的计算精度,为地铁客流量预测提供更精确的计算结果。 展开更多
关键词 地铁 粒子群优化 宽度学习系统 客流预测
在线阅读 下载PDF
基于回归分析的乘客平均延误时间模型研究 被引量:1
3
作者 张建华 陈德旺 《现代城市轨道交通》 2019年第5期110-114,共5页
地铁是大城市交通出行的主要方式。对于地铁乘客来说,延误时间是影响乘客的满意度和地铁的服务水平的一个重要指标,与客流量和发车间隔密切相关。现有研究缺乏基于客流数据的乘客延误时间与客流量、进站时间及发车间隔之间定量关系的研... 地铁是大城市交通出行的主要方式。对于地铁乘客来说,延误时间是影响乘客的满意度和地铁的服务水平的一个重要指标,与客流量和发车间隔密切相关。现有研究缺乏基于客流数据的乘客延误时间与客流量、进站时间及发车间隔之间定量关系的研究。文章根据福州地铁1号线的200多万条AFC刷卡原始数据统计分析出6 000多组客流量、进站时间、发车间隔和乘客延误时间的数据集,并通过3种经典回归分析算法进行分析,结果表明采用决策树回归算法的误差最小,可为地铁列车运行时刻表优化提供理论支撑。 展开更多
关键词 地铁 乘客 平均延误时间 模型研究 回归预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部