期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
深度学习可解释性研究进展 被引量:77
1
作者 成科扬 王宁 +1 位作者 师文喜 詹永照 《计算机研究与发展》 EI CSCD 北大核心 2020年第6期1208-1217,共10页
深度学习的可解释性研究是人工智能、机器学习、认知心理学、逻辑学等众多学科的交叉研究课题,其在信息推送、医疗研究、金融、信息安全等领域具有重要的理论研究意义和实际应用价值.从深度学习可解释性研究起源、研究探索期、模型构建... 深度学习的可解释性研究是人工智能、机器学习、认知心理学、逻辑学等众多学科的交叉研究课题,其在信息推送、医疗研究、金融、信息安全等领域具有重要的理论研究意义和实际应用价值.从深度学习可解释性研究起源、研究探索期、模型构建期3方面回顾了深度学习可解释性研究历史,从可视化分析、鲁棒性扰动分析、敏感性分析3方面展现了深度学习现有模型可解释性分析研究现状,从模型代理、逻辑推理、网络节点关联分析、传统机器学习模型改进4方面剖析了可解释性深度学习模型构建研究,同时对当前该领域研究存在的不足作出了分析,展示了可解释性深度学习的典型应用,并对未来可能的研究方向作出了展望. 展开更多
关键词 人工智能 深度学习 可解释性 神经网络 可视化
在线阅读 下载PDF
解耦表征学习研究进展 被引量:6
2
作者 成科扬 孟春运 +2 位作者 王文杉 师文喜 詹永照 《计算机应用》 CSCD 北大核心 2021年第12期3409-3418,共10页
解耦表征学习旨在对影响数据形态的关键因素进行建模,使得某一关键因素的变化仅仅引起数据在某项特征上的变化,而其他的特征不受影响,这有利于应对机器学习在模型可解释性、对象生成和操作以及零样本学习等问题上的挑战,因此解耦表征学... 解耦表征学习旨在对影响数据形态的关键因素进行建模,使得某一关键因素的变化仅仅引起数据在某项特征上的变化,而其他的特征不受影响,这有利于应对机器学习在模型可解释性、对象生成和操作以及零样本学习等问题上的挑战,因此解耦表征学习一直是机器学习领域的一个研究热点。从解耦表征学习的历史与动机入手,对解耦表征学习的研究现状以及应用进行归纳总结,分析了解耦表征所具有的不变性、复用性等特性,介绍了基于生成解耦表征变差因素的研究、基于流形相互作用解耦表征变差因素的研究、基于对抗性训练解耦表征变差因素的研究,以及一种变分自编码器β-VAE的研究等最新研究动态。同时,阐述了解耦表征学习的典型应用,并对未来的研究方向作出了展望。 展开更多
关键词 解耦学习 表征学习 变分推断 可解释性 机器学习 自编码器 变差因素 复用性
在线阅读 下载PDF
基于网络社交媒体的子话题检测技术综述 被引量:3
3
作者 理姗姗 杨文忠 +1 位作者 王婷 王丽花 《计算机应用》 CSCD 北大核心 2020年第6期1565-1573,共9页
在当前多种平台崛起的互联网背景下,与传统媒体相比,网络社交媒体中的数据具有传递速度快、用户参与度高、内容覆盖全等特点,其中存在着人们关注并发布评论的众多话题,而一个话题的相关信息中可能存在更深层次、更细粒度的子话题,针对... 在当前多种平台崛起的互联网背景下,与传统媒体相比,网络社交媒体中的数据具有传递速度快、用户参与度高、内容覆盖全等特点,其中存在着人们关注并发布评论的众多话题,而一个话题的相关信息中可能存在更深层次、更细粒度的子话题,针对该问题进行基于网络社交媒体的子话题检测技术的研究,这是一个新兴且不断发展的研究领域。通过社交媒体获取话题及子话题信息并参与讨论,这一方式正全方位、深层次改变着人们的生活,但是该领域技术还不成熟,且相关研究在国内尚处于起步阶段。首先,简述网络社交媒体中子话题检测的发展背景和基本概念;其次,将子话题检测技术分为七大类,对每类方法均加以介绍、对比和总结;然后,将子话题检测方式分为在线检测和离线检测两种方式,并将这两种方式进行对比,列举通用技术及两种方式下的常用技术;最后,概括了该领域当前不足及未来发展趋势。 展开更多
关键词 子话题 话题检测和追踪 网络社交媒体 话题层次 子事件
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部