针对煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂工况环境因素导致煤矸识别存在误检、漏检以及检测精度低的问题,提出一种基于CFS-YOLO算法的煤矸智能识别模型。采用ConvNeXt V2(Convolutional Neural Network with NeXt Units...针对煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂工况环境因素导致煤矸识别存在误检、漏检以及检测精度低的问题,提出一种基于CFS-YOLO算法的煤矸智能识别模型。采用ConvNeXt V2(Convolutional Neural Network with NeXt Units Version 2)特征提取模块替换主干网络末端的2个C3(Cross Stage Partial Bottle Neck Mudule)模块,通过将掩码自动编码器(Masked Autoencoders,MAE)和全局响应归一化(Global Response Normalization,GRN)层添加到ConvNeXt架构中,有效缓解特征崩溃问题以及保持特征在网络传递过程中的多样性;采用Focal-EIOU(Focal and Efficient Intersection Over Union)损失函数替换原CIOU(Computer Intersection Over Union)损失函数,通过其Focal-Loss机制和调整样本权重的方式优化边界框回归任务中的样本不平衡问题,提高模型的收敛速度和定位精度;添加无参注意力机制(Simple Attention Mechanism,SimAM)于主干网络每个C3模块的后端,凭借其注意力权重自适应调整策略,提升模型对尺度变化较大或低分辨率煤矸目标关键特征的提取能力。通过消融试验和对比试验验证所提CFS-YOLO模型的有效性与优越性。试验结果表明:CFS-YOLO模型对于煤矸在煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂环境下的检测效果均得到有效提高,模型的平均精度均值达到90.2%,相较于原YOLOv5s模型的平均精度均值提高了3.7%,平均检测速度达到90.09 FPS,可充分满足煤矸实时检测的需求。同时与YOLOv5s、YOLOv7-tiny与YOLOv8n等6种YOLO系列算法相比,CFS-YOLO模型对煤矿复杂环境的适应性最强且综合检测性能最佳,可为煤矸的智能高效分选提供技术支持。展开更多
为解决煤矿巷道环境恶劣及人工疲劳驾驶电机车导致煤矿井下有轨电机车事故频发的问题,提出一种基于改进YOLOv4-Tiny算法的YOLOv4-Tiny-4S矿井电机车多目标实时检测方法。首先,为了提高网络模型对于小目标的检测能力,将传统YOLOv4-Tiny...为解决煤矿巷道环境恶劣及人工疲劳驾驶电机车导致煤矿井下有轨电机车事故频发的问题,提出一种基于改进YOLOv4-Tiny算法的YOLOv4-Tiny-4S矿井电机车多目标实时检测方法。首先,为了提高网络模型对于小目标的检测能力,将传统YOLOv4-Tiny的两尺度预测增加至4尺度预测,并且在网络模型的颈部引入空间金字塔池化(spatial pyramid pooling,SPP)模块,以丰富特征融合信息,增大网络模型的感受野。其次,以煤矿巷道中的行人、电机车、信号灯及碎石作为检测目标,创建矿井电机车多目标检测数据集,并分别采用K-means和K-means++聚类分析算法对数据集重新聚类;对比分析结果表明,K-means++算法具有更好的聚类效果。最后,通过对传统YOLOv4-Tiny算法的消融实验,进一步展示了不同改进措施对网络模型检测性能的影响;并在电机车运行的煤矿巷道场景中,对比分析了YOLOv4-Tiny-4S算法与其他几种算法的检测性能。实验结果表明:YOLOv4-Tiny-4S算法能够准确检测并识别出图像中的各类目标,其平均精度均值(mean average precision,mAP)为95.35%,对小目标“碎石”的平均精度(average precision,AP)为86.69%,相比传统YOLOv4-Tiny算法分别提高了12.38%和41.66%;改进后算法的平均检测速度达58.7帧/s(frames per second,FPS),模型内存仅为26.3 Mb,YOLOv4-Tiny-4S算法的检测性能优于其他算法。本文提出的基于YOLOv4-Tiny-4S矿井电机车多目标实时检测方法可为实现矿井电机车的无人驾驶提供技术支撑。展开更多
基金安徽省高等学校科学研究项目(2022AH050834)安徽理工大学引进人才科研启动基金项目(2022yjrc61)+1 种基金安徽理工大学矿山智能技术与装备省部共建协同创新中心开放基金项目(CICJMITE202206)Open Fund of State Key Laboratory of MiningResponse and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC22KF24)。
文摘针对煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂工况环境因素导致煤矸识别存在误检、漏检以及检测精度低的问题,提出一种基于CFS-YOLO算法的煤矸智能识别模型。采用ConvNeXt V2(Convolutional Neural Network with NeXt Units Version 2)特征提取模块替换主干网络末端的2个C3(Cross Stage Partial Bottle Neck Mudule)模块,通过将掩码自动编码器(Masked Autoencoders,MAE)和全局响应归一化(Global Response Normalization,GRN)层添加到ConvNeXt架构中,有效缓解特征崩溃问题以及保持特征在网络传递过程中的多样性;采用Focal-EIOU(Focal and Efficient Intersection Over Union)损失函数替换原CIOU(Computer Intersection Over Union)损失函数,通过其Focal-Loss机制和调整样本权重的方式优化边界框回归任务中的样本不平衡问题,提高模型的收敛速度和定位精度;添加无参注意力机制(Simple Attention Mechanism,SimAM)于主干网络每个C3模块的后端,凭借其注意力权重自适应调整策略,提升模型对尺度变化较大或低分辨率煤矸目标关键特征的提取能力。通过消融试验和对比试验验证所提CFS-YOLO模型的有效性与优越性。试验结果表明:CFS-YOLO模型对于煤矸在煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂环境下的检测效果均得到有效提高,模型的平均精度均值达到90.2%,相较于原YOLOv5s模型的平均精度均值提高了3.7%,平均检测速度达到90.09 FPS,可充分满足煤矸实时检测的需求。同时与YOLOv5s、YOLOv7-tiny与YOLOv8n等6种YOLO系列算法相比,CFS-YOLO模型对煤矿复杂环境的适应性最强且综合检测性能最佳,可为煤矸的智能高效分选提供技术支持。
文摘为解决煤矿巷道环境恶劣及人工疲劳驾驶电机车导致煤矿井下有轨电机车事故频发的问题,提出一种基于改进YOLOv4-Tiny算法的YOLOv4-Tiny-4S矿井电机车多目标实时检测方法。首先,为了提高网络模型对于小目标的检测能力,将传统YOLOv4-Tiny的两尺度预测增加至4尺度预测,并且在网络模型的颈部引入空间金字塔池化(spatial pyramid pooling,SPP)模块,以丰富特征融合信息,增大网络模型的感受野。其次,以煤矿巷道中的行人、电机车、信号灯及碎石作为检测目标,创建矿井电机车多目标检测数据集,并分别采用K-means和K-means++聚类分析算法对数据集重新聚类;对比分析结果表明,K-means++算法具有更好的聚类效果。最后,通过对传统YOLOv4-Tiny算法的消融实验,进一步展示了不同改进措施对网络模型检测性能的影响;并在电机车运行的煤矿巷道场景中,对比分析了YOLOv4-Tiny-4S算法与其他几种算法的检测性能。实验结果表明:YOLOv4-Tiny-4S算法能够准确检测并识别出图像中的各类目标,其平均精度均值(mean average precision,mAP)为95.35%,对小目标“碎石”的平均精度(average precision,AP)为86.69%,相比传统YOLOv4-Tiny算法分别提高了12.38%和41.66%;改进后算法的平均检测速度达58.7帧/s(frames per second,FPS),模型内存仅为26.3 Mb,YOLOv4-Tiny-4S算法的检测性能优于其他算法。本文提出的基于YOLOv4-Tiny-4S矿井电机车多目标实时检测方法可为实现矿井电机车的无人驾驶提供技术支撑。
基金安徽省高等学校科学研究项目(2022AH050834)安徽理工大学引进人才科研启动基金项目(2022yjrc61)+1 种基金安徽理工大学矿山智能技术与装备省部共建协同创新中心开放基金项目(CICJMITE202206)Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC22KF24)。