期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
多智能体深度强化学习研究进展 被引量:8
1
作者 丁世飞 杜威 +2 位作者 张健 郭丽丽 丁玲 《计算机学报》 EI CAS CSCD 北大核心 2024年第7期1547-1567,共21页
深度强化学习(Deep Reinforcement Learning,DRL)在近年受到广泛的关注,并在各种领域取得显著的成功.由于现实环境通常包括多个与环境交互的智能体,多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)获得蓬勃的发展... 深度强化学习(Deep Reinforcement Learning,DRL)在近年受到广泛的关注,并在各种领域取得显著的成功.由于现实环境通常包括多个与环境交互的智能体,多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)获得蓬勃的发展,在各种复杂的序列决策任务上取得优异的表现.本文对多智能体深度强化学习的工作进展进行综述,主要内容分为三个部分.首先,我们回顾了几种常见的多智能体强化学习问题表示及其对应的合作、竞争和混合任务.其次,我们对目前的MADRL方法进行了全新的多维度的分类,并对不同类别的方法展开进一步介绍.其中,我们重点综述值函数分解方法,基于通信的MADRL方法以及基于图神经网络的MADRL方法.最后,我们研究了MADRL方法在现实场景中的主要应用.希望本文能够为即将进入这一快速发展领域的新研究人员和希望获得全方位了解并根据最新进展确定新方向的现有领域专家提供帮助. 展开更多
关键词 多智能体深度强化学习 基于值函数 基于策略 通信学习 图神经网络
在线阅读 下载PDF
随机配置网络研究进展 被引量:5
2
作者 张成龙 丁世飞 +1 位作者 郭丽丽 张健 《软件学报》 EI CSCD 北大核心 2024年第5期2379-2399,共21页
随机配置网络(stochastic configuration network,SCN)是一种新兴的增量式神经网络模型,与其他随机化神经网络方法不同,它能够通过监督机制进行隐含层节点参数配置,保证了模型的快速收敛性能.因其具有学习效率高、人为干预程度低和泛化... 随机配置网络(stochastic configuration network,SCN)是一种新兴的增量式神经网络模型,与其他随机化神经网络方法不同,它能够通过监督机制进行隐含层节点参数配置,保证了模型的快速收敛性能.因其具有学习效率高、人为干预程度低和泛化能力强等优点,自2017年提出以来,SCN吸引了大量国内外学者的研究兴趣,得到了快速的推广和发展.从SCN的基础理论、典型算法变体、应用领域以及未来研究方向等方面切入,全面地概述SCN研究进展.首先,从理论的角度分析SCN的算法原理、通用逼近性能及其优点;其次,重点研究深度SCN、二维SCN、鲁棒SCN、集成SCN、分布式并行SCN、正则化SCN等典型变体;随后介绍SCN在硬件实现、计算机视觉、医学数据分析、故障检测与诊断、系统建模预测等不同领域的应用进展;最后指出SCN在卷积神经网络架构、半监督学习、无监督学习、多视图学习、模糊神经网络、循环神经网络等研究方向的发展潜力. 展开更多
关键词 随机配置网络 神经网络 深度学习 随机化学习 研究进展
在线阅读 下载PDF
基于驾驶上下文感知的驾驶员识别模型
3
作者 杨林 张磊 +2 位作者 刘佰龙 梁志贞 张雪飞 《计算机工程与科学》 北大核心 2025年第3期548-560,共13页
随着隐私保护意识的提升,利用车辆轨迹识别汽车驾驶员已成为车辆数据分析热点。然而,现有模型难以准确捕捉驾驶风格与驾驶上下文之间的关系,导致识别准确率不高。因此,提出基于驾驶上下文感知的驾驶员识别模型CDIM。CDIM利用轨迹数据计... 随着隐私保护意识的提升,利用车辆轨迹识别汽车驾驶员已成为车辆数据分析热点。然而,现有模型难以准确捕捉驾驶风格与驾驶上下文之间的关系,导致识别准确率不高。因此,提出基于驾驶上下文感知的驾驶员识别模型CDIM。CDIM利用轨迹数据计算车辆运动特征,同时通过路网匹配获取出行路线,并设计基于双向Transformer的路段信息嵌入模块,为出行路线中每一段路段生成融合邻接路段特征的嵌入。然后,通过卷积跨模态注意力融合模块结合路段特征与运动特征,实现二者的高效融合。此外,结合外部因素特征,全面捕捉驾驶上下文对驾驶风格的影响。在公开数据集上的实验结果表明,CDIM的识别准确率为68.54%,相较于RM-Driver与Doufu分别提高了8.14%和4.81%,具有更高的驾驶员识别准确率。 展开更多
关键词 驾驶员识别 表示学习 上下文感知 特征融合
在线阅读 下载PDF
改进YOLOv8s的煤矿井下矿工行为检测方法
4
作者 陈伟 穆华星 +3 位作者 管彦允 刘珏廷 徐婷婷 王泽华 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第3期257-264,共8页
为解决煤矿井下视觉设备对矿工行为检测效果不佳的问题,采用模型优化和实验的方法,基于YOLOv8s构建基准模型,引入高效多尺度注意力机制改进主干网络,增强对矿工多姿势及多尺度特征的提取和表示能力。优化损失函数,提高对于井下复杂场景... 为解决煤矿井下视觉设备对矿工行为检测效果不佳的问题,采用模型优化和实验的方法,基于YOLOv8s构建基准模型,引入高效多尺度注意力机制改进主干网络,增强对矿工多姿势及多尺度特征的提取和表示能力。优化损失函数,提高对于井下复杂场景中低质量图像检测的准确性和稳定性。设计一种轻量化模块,替换原颈部深层网络的特征处理模块,保障检测高效性。研究结果表明:改进后的模型对井下矿工行为检测的平均精确度均值提高了1.2%,模型参数量减少了17%。研究结论为类似场景下特定任务的目标检测优化提供借鉴。 展开更多
关键词 煤矿复杂环境 行为检测 YOLOv8s 注意力机制 轻量化 低质量图像
在线阅读 下载PDF
移动群智感知中发掘潜在高质量用户的激励机制
5
作者 江海峰 商景杰 +1 位作者 王树豪 张寿军 《小型微型计算机系统》 北大核心 2025年第3期620-626,共7页
在移动群智感知的激励机制中,用户的感知质量和能力是重要的指标,对不同类型的任务是有差异的,用笼统的感知质量与能力标准选择用户往往会埋没潜在的高质量用户.针对这一问题,本文将用户的感知质量与能力根据任务的不同类型进行细分,在... 在移动群智感知的激励机制中,用户的感知质量和能力是重要的指标,对不同类型的任务是有差异的,用笼统的感知质量与能力标准选择用户往往会埋没潜在的高质量用户.针对这一问题,本文将用户的感知质量与能力根据任务的不同类型进行细分,在用户感知质量与能力未知的情况下,将用户选择问题建模成反向拍卖与多臂赌博机模型,不断学习与更新用户的感知质量与能力值,使用置信区间上界的方法估计用户的感知质量,并将其与用户的能力和报价作为选择用户的标准,提出了基于置信区间上界的质量与能力并驱的激励机制.当能力值均值达到平台规定的阈值时,用户将拥有招募其他用户的权限,并从其招募的用户完成的任务中获得额外的收益.本文证明了该激励机制满足计算有效性、真实性和个体理性.仿真实验结果表明,本文所提的激励机制在用户平均效用、任务平均质量和不同任务类型高能力值用户占比等方面具有良好的性能. 展开更多
关键词 移动群智感知 激励机制 多臂赌博机 置信区间上界
在线阅读 下载PDF
一种面向车载边缘计算基于服务缓存的任务协同卸载算法 被引量:1
6
作者 唐朝刚 李召 +1 位作者 肖硕 吴华明 《计算机学报》 北大核心 2025年第4期864-876,共13页
为充分利用边缘服务器的有限资源,提高应用服务的缓存效益,本文提出了以应用服务缓存为基础的协同卸载的车载边缘计算模型。在此基础上,以卸载任务的时延和能耗最小化为优化目标,展开对应用服务缓存和计算卸载问题的研究。将服务缓存、... 为充分利用边缘服务器的有限资源,提高应用服务的缓存效益,本文提出了以应用服务缓存为基础的协同卸载的车载边缘计算模型。在此基础上,以卸载任务的时延和能耗最小化为优化目标,展开对应用服务缓存和计算卸载问题的研究。将服务缓存、任务卸载以及计算资源分配的联合优化建模为非线性整数规划问题。为降低求解难度,将原问题分解为服务缓存和计算卸载联合决策子问题以及边缘服务器计算资源分配子问题。其中,将服务缓存和计算卸载子问题建模为马尔科夫决策过程,并提出了一种基于深度强化学习的缓存卸载方案。仿真结果表明,相较于其它基准方法,本文提出的方案能够将优化目标值降低约7%,响应时延减少约12%,同时将缓存命中率提升约9%。 展开更多
关键词 车载边缘计算 任务卸载 应用缓存 协作卸载 深度强化学习
在线阅读 下载PDF
基于CodeBERT和Stacking集成学习的补丁正确性验证方法
7
作者 韩威 姜淑娟 周伟 《计算机科学》 北大核心 2025年第1期250-258,共9页
近年来,自动程序修复已成为软件工程领域的重要研究课题。然而,现有的自动修复技术大多是基于补丁生成和测试的,在补丁验证环节时间成本很高。此外,由于测试套件的不完备,许多候选补丁虽然能通过测试,但实际上并不正确,从而导致补丁过... 近年来,自动程序修复已成为软件工程领域的重要研究课题。然而,现有的自动修复技术大多是基于补丁生成和测试的,在补丁验证环节时间成本很高。此外,由于测试套件的不完备,许多候选补丁虽然能通过测试,但实际上并不正确,从而导致补丁过拟合。为提高补丁验证的效率并缓解补丁过拟合的问题,提出了一种静态的补丁验证方法。该方法首先使用大型预训练模型CodeBERT自动提取缺陷代码片段和补丁代码片段的语义特征,然后使用历史缺陷修复补丁数据训练Stacking集成学习模型,训练之后的模型可以对新的缺陷修复补丁进行有效验证。在Defects4J缺陷数据集相关的1 000个补丁数据上对所提方法的验证能力进行评估。实验结果表明,该方法可以有效地验证补丁的正确性,从而提高补丁验证的效率。 展开更多
关键词 自动程序修复 补丁验证 预训练模型 集成学习 Defects4J缺陷数据集
在线阅读 下载PDF
基于上下文全局空间图的轨迹用户链接
8
作者 侯萱 梁志贞 +2 位作者 张磊 刘佰龙 张雪飞 《计算机工程与科学》 北大核心 2025年第2期336-348,共13页
轨迹用户链接TUL是指判定目标轨迹所属用户,已成为一项重要的轨迹数据挖掘任务。尽管基于深度学习的模型在TUL研究中取得显著进展,但现有模型主要关注单个轨迹点的基本时空特征,忽略全局位置空间相关性、上下文信息和用户的多周期移动规... 轨迹用户链接TUL是指判定目标轨迹所属用户,已成为一项重要的轨迹数据挖掘任务。尽管基于深度学习的模型在TUL研究中取得显著进展,但现有模型主要关注单个轨迹点的基本时空特征,忽略全局位置空间相关性、上下文信息和用户的多周期移动规律,导致TUL结果准确度不高。提出了一种基于上下文全局空间图的轨迹用户链接模型CGSG-TUL。在位置嵌入方面,根据历史轨迹构建上下文全局空间图,融入所有位置的邻近关系和类别等上下文信息,对位置的空间相关性有效建模。在时间编码方面,根据不同时间尺度对签入的时间戳进行编码,捕获用户的多周期移动规律。在Foursquare-NYK和Foursquare-TKY这两个真实数据集上的实验结果表明,CGSG-TUL性能比目前最好的基准模型GNNTUL的ACC@1和Marco-F 1分别平均提高2.50%和2.72%。 展开更多
关键词 轨迹用户链接 上下文全局空间图 多周期移动规律 图神经网络 TRANSFORMER
在线阅读 下载PDF
孪生支持向量回归机研究进展 被引量:3
9
作者 丁世飞 张子晨 +2 位作者 郭丽丽 张健 徐晓 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1117-1134,共18页
孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练... 孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练样本上得到的小误差分类器对独立测试集的测试误差仍然较小.孪生支持向量回归机通过将线性不可分样本映射到高维特征空间,使得映射后的样本在该高维特征空间内线性可分,保证了其具有较好的泛化性能.孪生支持向量回归机的算法思想基于孪生支持向量机(Twin Support Vector Machine,TWSVM),几何意义是使所有样本点尽可能地处于两条回归超平面的上(下)不敏感边界之间,最终的回归结果由两个超平面的回归值取平均得到.孪生支持向量回归机需求解两个规模较小的二次规划问题(Quadratic Programming Problems,QPPs)便可得到两条具有较小拟合误差的回归超平面,训练时间和拟合精度都高于传统的支持向量回归机(Support Vector Regression,SVR),且其QPPs的对偶问题存在全局最优解,避免了容易陷入局部最优的问题,故孪生支持向量回归机已成为机器学习的热门领域之一.但孪生支持向量回归机作为机器学习领域的一个较新的理论,其数学模型与算法思想都尚不成熟,在泛化性能、求解速度、矩阵稀疏性、参数选取、对偶问题等方面仍存在进一步改进的空间.本文首先给出了两种孪生支持向量回归机的数学模型与几何意义,然后将孪生支持向量回归机的几个常见的改进策略归纳如下.(1)加权孪生支持向量回归机由于孪生支持向量回归机中每个训练样本受到的惩罚是相同的,但每个样本对超平面的影响不同,尤其是噪声和离群值会使算法性能降低,并且在不同位置的训练样本应给予不同的处罚更为合理,因此考虑在孪生支持向量回归机的每个QPP中引入一个加权系数,给予不同位置的训练样本不同程度的惩罚.(2)拉格朗日孪生支持向量回归机由于孪生支持向量回归机的对偶问题中半正定矩阵的逆矩阵可能不存在,若存在,则对偶问题不是严格凸函数,可能存在多个解,因此考虑使用松弛变量的2范数代替原有的1范数,使对偶问题更简单,易于求解.(3)最小二乘孪生支持向量回归机由于孪生支持向量回归机的求解需要在对偶空间进行,得到的解为近似解,考虑通过最小二乘法将原问题的不等式约束转化为等式约束,使得原问题可以在原空间内求解,在很大程度上降低计算时间,提高泛化性能,且不损失精度.(4)v-孪生支持向量回归机通过引入一组参数v1与v2自动调节ε1与ε2的值以控制训练样本的特定部分对两条回归超平面所能造成的最大误差,从而自适应给定数据的结构,提高孪生支持向量回归机的拟合精度.(5)ε-孪生支持向量回归机在孪生支持向量回归机的原问题中引入正则化项以达到结构风险最小化的目的,使对偶问题转化为稳定的正定二次规划问题,并通过SOR求解对偶问题,加快训练速度.(6)孪生参数不敏感支持向量回归机克服参数的选取对孪生支持向量回归机超平面构造的影响,使算法非常适合于存在异方差噪声数据的数据集,训练速度和泛化性能也有提升.本文同时对以上算法的数学模型、改进算法及应用进行了系统地分析与总结,给出了以上算法在9个UCI基准数据集上的回归性能与计算时间,并在模型结构层面逐一分析每个算法的表现与耗时的根本原因.对于其他不便于归类的孪生支持向量回归机改进算法及应用,本文也对其作逐一总结.整体来看,最小二乘孪生支持向量回归机在性能和计算时间方面表现最佳,拉格朗日孪生支持向量回归机、v-孪生支持向量回归机的性能并列次优且计算时间接近,加权孪生支持向量回归机、ε-孪生支持向量回归机和孪生参数不敏感支持向量回归机的性能不理想,但计算时间接近.本文旨在使读者对孪生支持向量回归机的不同改进算法之间的异同点与优缺点产生更深刻的理解与认识,从而将更多优秀的改进策略应用于孪生支持向量回归机,最终为进一步提高孪生支持向量回归机的性能以及扩展孪生支持向量回归机的应用范围提供较为清晰的思路. 展开更多
关键词 孪生支持向量回归机 拟合精度 泛化能力 计算时间
在线阅读 下载PDF
融合深度强化学习和图卷积神经网络的类集成测试序列生成方法
10
作者 王晨源 张艳梅 袁冠 《计算机科学》 北大核心 2025年第6期58-65,共8页
类集成测试确保软件系统中多个类之间正常交互和协作,合理的类集成测试序列可以降低测试成本。为了降低程序中类集成测试序列的测试成本,国内外研究人员提出了多种类集成测试序列生成方法,但已有的方法生成的类集成测试序列的测试成本... 类集成测试确保软件系统中多个类之间正常交互和协作,合理的类集成测试序列可以降低测试成本。为了降低程序中类集成测试序列的测试成本,国内外研究人员提出了多种类集成测试序列生成方法,但已有的方法生成的类集成测试序列的测试成本过高。针对上述问题,提出一种融合深度强化学习和图卷积神经网络的类集成测试序列生成方法。该方法首先将图卷积神经网络作为深度强化学习中的神经网络部分,并对智能体的网络结构和环境状态等方面进行改进,使环境和智能体可以基于图结构的数据进行交互;然后通过设计强化学习中的动作空间和奖励函数等基本要素,完成类集成测试序列的生成场景;最终实现智能体在不断地学习和尝试中得到最佳的类集成测试序列。实验结果表明,在以总体测试桩复杂度作为度量指标时,该方法能够在一定程度上降低生成类集成测试序列所需的测试桩代价。 展开更多
关键词 类集成测试序列 深度强化学习 图卷积神经网络 测试桩 测试桩复杂度
在线阅读 下载PDF
基于图提示的半监督开放词汇多标记学习
11
作者 李仲年 皇甫志宇 +3 位作者 杨凯杰 营鹏 孙统风 许新征 《计算机研究与发展》 北大核心 2025年第2期432-442,共11页
半监督多标记学习利用有标记数据和无标记数据进行模型的训练,降低了多标记数据的标记成本并取得了不错的结果,吸引了很多研究者不断进行研究.然而,在半监督标注过程中,由于标记的数量较多,往往会出现某些标记缺失标注样本的情况,这些... 半监督多标记学习利用有标记数据和无标记数据进行模型的训练,降低了多标记数据的标记成本并取得了不错的结果,吸引了很多研究者不断进行研究.然而,在半监督标注过程中,由于标记的数量较多,往往会出现某些标记缺失标注样本的情况,这些标记被称为开放词汇.开放词汇会导致模型无法学习到该类别的标记信息,使得模型性能下降. 针对上述问题,提出了基于图提示的半监督开放词汇多标记 学习方法. 具体地,该方法利用基于提示的图神经网络对预训练大模型进行微调,挖掘和探索开放词汇与 监督样本之间的关系. 通过使用包含图像与文本的多模态数据构造图神经网络作为预训练大模型的文本 输入进行学习. 其次利用预训练大模型在开放词汇上的泛化能力,对无监督样本生成伪标记,实现对输出 分类层的微调,使模型在对开放词汇进行分类时能获得更加理想的效果. 多个基准数据集上的实验结果 均显示,基于图提示的半监督开放词汇多标记学习方法优于目前的主流方法,在 VOC,COCO,CUB,NUS 等基准数据集上均取得了最优的效果. 展开更多
关键词 半监督多标记学习 预训练模型 图神经网络 开放词汇 提示
在线阅读 下载PDF
软件缺陷预测技术研究进展 被引量:49
12
作者 宫丽娜 姜淑娟 姜丽 《软件学报》 EI CSCD 北大核心 2019年第10期3090-3114,共25页
随着软件规模的扩大和复杂度的不断提高,软件的质量问题成为关注的焦点,软件缺陷是软件质量的对立面,威胁着软件质量,如何在软件开发的早期挖掘出缺陷模块成为一个亟需解决的问题.软件缺陷预测通过挖掘软件历史仓库,设计出与缺陷相关的... 随着软件规模的扩大和复杂度的不断提高,软件的质量问题成为关注的焦点,软件缺陷是软件质量的对立面,威胁着软件质量,如何在软件开发的早期挖掘出缺陷模块成为一个亟需解决的问题.软件缺陷预测通过挖掘软件历史仓库,设计出与缺陷相关的内在度量元,然后借助机器学习等方法来提前发现与锁定缺陷模块,从而合理地分配有限的资源.因此,软件缺陷预测是软件质量保证的重要途径之一,近年来已成为软件工程中一个非常重要的研究课题.汇总近 8 年(2010 年~2017 年)国内外的缺陷预测技术的研究成果,并以缺陷预测的形式为主线进行分析,首先介绍了软件缺陷预测模型的框架;然后从软件缺陷数据集、构建模型的方法及评价指标这 3 个方面对已有的研究工作进行分类归纳和比较;最后探讨了软件缺陷预测的未来可能的研究方向、机遇和挑战. 展开更多
关键词 软件缺陷预测 软件度量 数据预处理 机器学习 性能评价指标
在线阅读 下载PDF
受限玻尔兹曼机研究综述 被引量:17
13
作者 张健 丁世飞 +3 位作者 张楠 杜鹏 杜威 于文家 《软件学报》 EI CSCD 北大核心 2019年第7期2073-2090,共18页
概率图模型是目前机器学习研究的热点,基于概率图模型构造的生成模型已广泛应用于图像和语音处理等领域。受限玻尔兹曼机(restricted Boltzmann machines,简称RBMs)是一种概率无向图,在建模数据分布方面有重要的研究价值,RBMs既可以结... 概率图模型是目前机器学习研究的热点,基于概率图模型构造的生成模型已广泛应用于图像和语音处理等领域。受限玻尔兹曼机(restricted Boltzmann machines,简称RBMs)是一种概率无向图,在建模数据分布方面有重要的研究价值,RBMs既可以结合卷积算子构造深度判别模型,为深度网络提供统计力学的理论支持,也可以结合有向图构建生成模型,提供具有多峰分布的先验信息。主要综述了以RBMs为基础的概率图模型的相关研究。首先介绍了基于RBMs的机器学习模型的基本概念和训练算法,并讨论了基于极大似然估计的各训练算法的联系,比较了各算法的log似然损失;其次,综述了RBMs模型最新的研究进展,包括在目标函数中引入对抗损失和W距离,并构造基于RBMs先验的变分自编码模型(variational autoencoders,简称VAEs)、基于对抗损失的RBMs模型,并讨论了各实值RBMs模型之间的联系和区别;最后,综述了以RBMs为基础的模型在深度学习中的应用,并讨论了神经网络和RBMs模型在研究中存在的问题及未来的研究方向。 展开更多
关键词 受限制的玻尔兹曼机 神经网络 概率图模型 深度学习
在线阅读 下载PDF
基于深度学习的点云分割研究进展分析 被引量:14
14
作者 赵佳琦 周勇 +3 位作者 何欣 卜一凡 姚睿 郭睿 《电子与信息学报》 EI CSCD 北大核心 2022年第12期4426-4440,共15页
深度传感器及激光扫描技术的快速发展使人们可以轻易地采集到大量的点云数据。点云数据可以提供丰富的场景及对象信息,现已成为自动驾驶、虚拟现实、机器人导航等应用的首选研究对象。作为点云处理的有效手段,点云分割技术受到了各界的... 深度传感器及激光扫描技术的快速发展使人们可以轻易地采集到大量的点云数据。点云数据可以提供丰富的场景及对象信息,现已成为自动驾驶、虚拟现实、机器人导航等应用的首选研究对象。作为点云处理的有效手段,点云分割技术受到了各界的广泛关注。尤其是在深度学习的推动下,点云分割的精度和鲁棒性有了很大的提升。该文首先介绍了点云分割存在的问题与挑战,接着从间接、直接处理点云的角度对点云分割近年来的工作进行了对比分析,其中,间接的方法有基于多视图、基于体素的方法两类,对于直接的方法,该文将其归纳为5类,分别为基于点处理、基于优化卷积神经网络、基于图卷积、基于时序和基于无监督学习的方法。然后介绍了每个类别中具有代表性的方法的基本思想,并阐述了每个方法的优缺点。此外,该文还介绍了点云分割的常用数据集以及评价指标。最后对点云分类、分割技术的未来进行了展望。 展开更多
关键词 深度学习 点云 语义分割 进展分析
在线阅读 下载PDF
面向类集成测试序列生成的强化学习研究 被引量:4
15
作者 丁艳茹 张艳梅 +3 位作者 姜淑娟 袁冠 王荣存 钱俊彦 《软件学报》 EI CSCD 北大核心 2022年第5期1674-1698,共25页
集成测试是软件测试过程中不可缺少的步骤,针对在集成测试中如何对系统中的类合理排序的问题,国内外研究者提出了多种生成类集成测试序列的方法,然而他们大多没有将测试桩复杂度作为评估测试代价的指标.针对该问题,提出面向类集成测试... 集成测试是软件测试过程中不可缺少的步骤,针对在集成测试中如何对系统中的类合理排序的问题,国内外研究者提出了多种生成类集成测试序列的方法,然而他们大多没有将测试桩复杂度作为评估测试代价的指标.针对该问题,提出面向类集成测试序列生成的强化学习研究方法,以总体测试桩复杂度为评价测试代价的指标,生成测试代价尽可能低的类集成测试序列.首先,定义强化学习任务,根据任务设定算法的追求目标;其次,进行程序的静态分析,根据分析得到的结果计算测试桩复杂度;然后,将测试桩复杂度的计算融入奖励函数的设计中,为选择下一步动作提供信息和依据;最后,通过奖励函数反馈值函数,通过值函数的设定保证累计奖励最大化.当智能体完成规定训练次数,系统会选择获得最大累计奖励值的类集成测试序列进行输出,即为我们追求的测试代价尽可能低的结果.实验结果表明,与现有方法相比,在以总体测试桩复杂度为评价指标时,提出的方法结果更优. 展开更多
关键词 类集成测试序列 强化学习 测试桩 测试代价 奖励函数
在线阅读 下载PDF
动态社区发现方法研究综述 被引量:15
16
作者 端祥宇 袁冠 孟凡荣 《计算机科学与探索》 CSCD 北大核心 2021年第4期612-630,共19页
随着社交媒体多样性的增加,实时分析社交网络的需求不断增大,动态社区发现的研究受到了广泛的关注。已有的社区发现综述多是侧重静态社区发现,以及相关方法的探讨,无法进行网络演化分析,此外社区的实体数据往往具有交叉更替性和时序性,... 随着社交媒体多样性的增加,实时分析社交网络的需求不断增大,动态社区发现的研究受到了广泛的关注。已有的社区发现综述多是侧重静态社区发现,以及相关方法的探讨,无法进行网络演化分析,此外社区的实体数据往往具有交叉更替性和时序性,因此对动态社区发现的研究现状进行分析和综述。首先,基于复杂网络的研究背景,提出了通用的动态社区发现研究框架;接着,形式化表示动态社区发现的相关定义,并从网络层面和节点层面对动态社区演化进行详细分析;然后,根据架构和技术的不同,对动态社区发现方法进行归纳分类,并结合常用数据集和评价指标对经典静态社区发现算法进行定性和定量分析;最后,介绍了社区发现的典型应用场景,探讨了当前动态社区发现研究面临的主要挑战,针对性地提出了相关解决方案,为动态社区发现研究领域勾画出较为清晰和全面的研究方向。 展开更多
关键词 动态社区发现 社交网络 网络分析 动态社区演化
在线阅读 下载PDF
基于实值RBM的深度生成网络研究 被引量:4
17
作者 张健 丁世飞 +1 位作者 丁玲 张成龙 《软件学报》 EI CSCD 北大核心 2021年第12期3802-3813,共12页
受限玻尔兹曼机(restricted Boltzmann machine,简称RBM)是一种概率无向图,传统的RBM模型假设隐藏层单元是二值的,二值单元的优势在于计算过程和采样过程相对简单,然而二值化会对基于隐藏层单元的特征提取和数据重构过程带来信息损失.因... 受限玻尔兹曼机(restricted Boltzmann machine,简称RBM)是一种概率无向图,传统的RBM模型假设隐藏层单元是二值的,二值单元的优势在于计算过程和采样过程相对简单,然而二值化会对基于隐藏层单元的特征提取和数据重构过程带来信息损失.因此,将RBM的可见层单元和隐藏层单元实值化并保持模型训练的有效性,是目前RBM理论研究的重点问题.为了解决这个问题,将二值单元拓展为实值单元,利用实值单元建模数据并提取特征.具体而言,在可见层单元和隐藏层单元之间增加辅助单元,然后将图正则化项引入到能量函数中,基于二值辅助单元和图正则化项,流形上的数据有更高的概率被映射为参数化的截断高斯分布;同时,远离流形的数据有更高的概率被映射为高斯噪声.由此,模型的隐层单元可以被表示为参数化截断高斯分布或高斯噪声的采样实值.该模型称为基于辅助单元的受限玻尔兹曼机(restricted Boltzmann machine with auxiliary units,简称ARBM).在理论上分析了模型的有效性,然后构建了相应的深度模型,并通过实验验证模型在图像重构任务和图像生成任务中的有效性. 展开更多
关键词 受限玻尔兹曼机 神经网络 概率图模型 深度学习
在线阅读 下载PDF
密度峰值聚类算法研究进展 被引量:24
18
作者 徐晓 丁世飞 丁玲 《软件学报》 EI CSCD 北大核心 2022年第5期1800-1816,共17页
密度峰值聚类(density peaks clustering,DPC)算法是聚类分析中基于密度的一种新兴算法,该算法考虑局部密度和相对距离绘制决策图,快速识别簇中心,完成聚类.DPC具有唯一的输入参数,且无需先验知识,也无需迭代.自2014年提出以来,DPC引起... 密度峰值聚类(density peaks clustering,DPC)算法是聚类分析中基于密度的一种新兴算法,该算法考虑局部密度和相对距离绘制决策图,快速识别簇中心,完成聚类.DPC具有唯一的输入参数,且无需先验知识,也无需迭代.自2014年提出以来,DPC引起了学者们的极大兴趣,并得到了快速发展.首先阐述DPC的基本理论,并通过与经典聚类算法比较,分析了DPC的特点;其次,分别从聚类精度和计算复杂度两个角度分析了DPC的弊端及其优化方法,包括局部密度优化、分配策略优化、多密度峰优化以及计算复杂度优化,并介绍了每个类别的主要代表算法;最后介绍了DPC在不同领域中的相关应用研究.对DPC的优缺点提供了全面的理论分析,并对DPC的优化以及应用进行了全面阐述.还试图找出进一步的挑战来促进DPC研究发展. 展开更多
关键词 密度峰值聚类 聚类精度 计算复杂度 应用
在线阅读 下载PDF
基于贡献度证明共识机制的去中心化联邦学习框架 被引量:4
19
作者 乔少杰 林羽丰 +6 位作者 韩楠 杨国平 李贺 袁冠 毛睿 元昌安 Louis Alberto GUTIERREZ 《软件学报》 EI CSCD 北大核心 2023年第3期1148-1167,共20页
在大数据背景下,保证数据可信共享是数据联邦的基本要求.区块链技术代替传统的主从架构,可以提高联邦学习(federated learning,FL)的安全性.然而,现有工作中,模型参数验证与数据持久化所产生的巨大通信成本和存储消耗,已经成为数据联邦... 在大数据背景下,保证数据可信共享是数据联邦的基本要求.区块链技术代替传统的主从架构,可以提高联邦学习(federated learning,FL)的安全性.然而,现有工作中,模型参数验证与数据持久化所产生的巨大通信成本和存储消耗,已经成为数据联邦中亟待解决的问题.针对上述问题,设计了一种高效的去中心化联邦学习框架(efficient decentralized federated learning framework,EDFL),能够降低存储开销,并显著提升FL的学习效率.首先,提出了一种基于贡献度证明(proof-of-contribution)的共识机制,使得区块生成者的选举基于历史贡献度而不采用竞争机制,从而有效发避免了挖矿过程产生的区块生成延迟,并以异步方式缓解模型参数验证中的阻塞问题;其次,提出了一种角色自适应激励算法,因为该算法基于节点的工作强度和EDFL所分配的角色,所以能够激励合法节点更积极地进行模型训练,并有效地识别出恶意节点;再者,提出一种区块链分区存储策略,使得多重局部修复编码块(local reconstruction code)可被均匀地分布到网络的各个节点上,进而降低节点的本地存储代价,并实现了较高的数据恢复效率;最后,在真实的FEMNIST数据集上,对EDFL的学习效率、存储可扩展性和安全性进行了评估.实验结果表明,EDFL在以上3个方面均优于主流的基于区块链的FL框架. 展开更多
关键词 数据联邦 区块链 大数据安全管理 共识机制 存储策略
在线阅读 下载PDF
并发缺陷检测技术研究进展 被引量:5
20
作者 薄莉莉 姜淑娟 +2 位作者 张艳梅 王兴亚 于巧 《计算机科学》 CSCD 北大核心 2019年第5期13-20,共8页
多核时代的到来使得并发程序的设计备受人们关注。然而,并发程序的并发性和不确定性容易引发并发缺陷。因此,快速且有效地检测出这些并发缺陷尤为重要。首先,将目前常见的并发缺陷分为五大类(并发类型状态缺陷、死锁、数据竞争、原子性... 多核时代的到来使得并发程序的设计备受人们关注。然而,并发程序的并发性和不确定性容易引发并发缺陷。因此,快速且有效地检测出这些并发缺陷尤为重要。首先,将目前常见的并发缺陷分为五大类(并发类型状态缺陷、死锁、数据竞争、原子性违背和顺序违背);随后,从软件运行的角度,将现有的并发缺陷检测技术分为静态分析、动态分析和动静结合分析,并对每一类进行详细的分析、比较和总结;接着,对并发缺陷检测技术的通用性进行分析和总结;最后,从通用准确的并发缺陷检测、软硬件相结合的并发缺陷检测、并发缺陷检测修复一体化、适用于松散内存模型的并发缺陷检测、安卓等其他应用平台的并发缺陷检测和分布式系统非确定性并发缺陷研究等方面,对并发缺陷检测技术的未来研究进行了探讨。 展开更多
关键词 并发程序 并发缺陷 缺陷检测 软件测试
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部