期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于一维密集连接卷积网络的故障诊断研究
被引量:
10
1
作者
赵志宏
赵敬娇
+1 位作者
李晴
李乐豪
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第12期25-33,共9页
近年来,由于深度学习的不断发展,基于数据驱动的轴承故障诊断被广泛研究,卷积神经网络(CNN)等深度神经网络模型逐渐被应用到故障诊断中.针对传统方法人工提取故障特征困难,深层CNN网络模型训练效率低,过拟合严重的问题,提出了一种基于...
近年来,由于深度学习的不断发展,基于数据驱动的轴承故障诊断被广泛研究,卷积神经网络(CNN)等深度神经网络模型逐渐被应用到故障诊断中.针对传统方法人工提取故障特征困难,深层CNN网络模型训练效率低,过拟合严重的问题,提出了一种基于一维密集连接卷积网络的轴承故障诊断模型.轴承的一维振动数据作为输入,利用卷积网络自动提取故障特征信息,采用密集连接机制实现高层次特征与低层次特征相结合,从而更有效地提取故障特征信息.通过批归一化等方法避免过拟合现象,最后利用SoftMax层对故障进行分类,从而实现智能故障诊断.对凯斯西储大学轴承数据集及高铁轮对轴承数据集上的不同故障类型的实测数据进行实验,实验结果表明,该方法在数据集上的准确率均能达到98%以上,能有效识别故障类型,具有一定的工程应用价值.
展开更多
关键词
深度学习
卷积网络
密集连接
故障诊断
在线阅读
下载PDF
职称材料
题名
基于一维密集连接卷积网络的故障诊断研究
被引量:
10
1
作者
赵志宏
赵敬娇
李晴
李乐豪
机构
石家庄铁道大学信息与科学技术学院
石家庄铁道大学
省部共建交通工程结构力学行为与系统安全国家重点实验室
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第12期25-33,共9页
基金
国家自然科学基金项目(11972236,11790282).
文摘
近年来,由于深度学习的不断发展,基于数据驱动的轴承故障诊断被广泛研究,卷积神经网络(CNN)等深度神经网络模型逐渐被应用到故障诊断中.针对传统方法人工提取故障特征困难,深层CNN网络模型训练效率低,过拟合严重的问题,提出了一种基于一维密集连接卷积网络的轴承故障诊断模型.轴承的一维振动数据作为输入,利用卷积网络自动提取故障特征信息,采用密集连接机制实现高层次特征与低层次特征相结合,从而更有效地提取故障特征信息.通过批归一化等方法避免过拟合现象,最后利用SoftMax层对故障进行分类,从而实现智能故障诊断.对凯斯西储大学轴承数据集及高铁轮对轴承数据集上的不同故障类型的实测数据进行实验,实验结果表明,该方法在数据集上的准确率均能达到98%以上,能有效识别故障类型,具有一定的工程应用价值.
关键词
深度学习
卷积网络
密集连接
故障诊断
Keywords
deep learning
CNN(convolutional neural network)
dense connection
fault diagnosis
分类号
TH133.33 [机械工程—机械制造及自动化]
TH165.3 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于一维密集连接卷积网络的故障诊断研究
赵志宏
赵敬娇
李晴
李乐豪
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2020
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部