期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Faster R-CNN的除草机器人杂草识别算法 被引量:25
1
作者 李春明 逯杉婷 +1 位作者 远松灵 王震洲 《中国农机化学报》 北大核心 2019年第12期171-176,共6页
针对当前除草机器人杂草识别定位不准确、实时性差等问题,提出一种基于Faster R-CNN的草坪杂草识别算法。该方法首先使用快速区域卷积神经网络(Faster R-CNN)算法训练初始化模型,然后通过在网络池化层后添加生成对抗网络(GAN)噪声层来... 针对当前除草机器人杂草识别定位不准确、实时性差等问题,提出一种基于Faster R-CNN的草坪杂草识别算法。该方法首先使用快速区域卷积神经网络(Faster R-CNN)算法训练初始化模型,然后通过在网络池化层后添加生成对抗网络(GAN)噪声层来提高网络的鲁棒性。试验结果表明,该种方法在正常拍摄的测试集图片中识别率达到97.05%,在加噪图片测试集的识别率达到95.15%,识别结果均优于传统的机器学习方法。同时,本方法具有识别速度快的特点,可用于实时检测,在园林杂草清理等方面具有应用价值。 展开更多
关键词 杂草识别 深度学习 快速区域卷积神经网络 区域建议网络 生成对抗网络
在线阅读 下载PDF
基于V-视差法的道路区域检测算法研究 被引量:4
2
作者 李春明 耿永鹏 远松灵 《激光杂志》 CAS 北大核心 2022年第1期107-112,共6页
针对当前基于双目视觉的道路环境分析实时性差、检测不准确等问题,提出了一种改进V视差法的道路区域检测算法。该算法首先对原始图片进行车道线检测确定道路消失点,从而确定图像的感兴趣区域。然后,使用极大最小值约束获取V视差图中的斜... 针对当前基于双目视觉的道路环境分析实时性差、检测不准确等问题,提出了一种改进V视差法的道路区域检测算法。该算法首先对原始图片进行车道线检测确定道路消失点,从而确定图像的感兴趣区域。然后,使用极大最小值约束获取V视差图中的斜线,从而提取道路区域。实验结果表明,由于该方法在确定感兴趣区域后计算原始视差图,因此,速度提高了29.71%,且相对于传统V视差法,算法更好地实现了路面分割;同时,障碍物检测的精确率和召回率两个指标分别提高了2.165%和4.837%。基于该算法具有良好的准确性和实时性,能有效识别道路中的障碍物,因此,可以为车辆提供可行驶区域以及为驾驶员提供辅助作用。 展开更多
关键词 双目视觉 辅助驾驶 道路检测 感兴趣区域 V视差图
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部