期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于上下文通道注意力机制的人脸属性估计与表情识别 被引量:2
1
作者 徐杰 钟勇 +2 位作者 王阳 张昌福 杨观赐 《计算机应用》 北大核心 2025年第1期253-260,共8页
人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先... 人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先,构建基于ConvNext的局部特征编码骨干网络,并运用骨干网络编码局部特征的有效性来充分表征人脸局部特征之间的差异性;其次,提出上下文通道注意力(CC Attention)机制,通过动态自适应调整特征通道上的权重信息,表征深度特征的全局和局部特征,从而弥补骨干网络编码全局特征能力的不足;最后,设计不同分类策略,针对人脸属性估计(FAE)和面部表情识别(FER)任务,分别采用不同损失函数组合,以促使模型学习更多的面部细粒度特征。实验结果表明,所提FAER模型在人脸属性数据集CelebA(CelebFaces Attributes)上取得了91.87%的平均准确率,相较于次优模型SwinFace(Swin transformer for Face)高出0.55个百分点;在面部表情数据集RAF-DB和AffectNet上分别取得了91.75%和66.66%的准确率,相较于次优模型TransFER(Transformers for Facial Expression Recognition)分别高出0.84和0.43个百分点。 展开更多
关键词 人脸属性估计 面部表情识别 注意力机制 细粒度特征 特征差异
在线阅读 下载PDF
基于生成对抗网络的联邦学习深度影子防御方案 被引量:1
2
作者 周辉 陈玉玲 +2 位作者 王学伟 张洋文 何建江 《计算机应用》 CSCD 北大核心 2024年第1期223-232,共10页
联邦学习(FL)可以使用户在不直接上传原始数据的条件下完成多方数据共享和交互,有效降低隐私泄露风险。然而,现有的研究表明敌手仍可以通过共享的梯度信息重构出原始数据。为进一步保护联邦学习隐私,基于生成对抗网络(GAN)提出一种联邦... 联邦学习(FL)可以使用户在不直接上传原始数据的条件下完成多方数据共享和交互,有效降低隐私泄露风险。然而,现有的研究表明敌手仍可以通过共享的梯度信息重构出原始数据。为进一步保护联邦学习隐私,基于生成对抗网络(GAN)提出一种联邦学习深度影子防御方案。首先,通过生成对抗网络学习原始真实数据分布特征,并生成可替代的影子数据;然后,通过影子数据训练影子模型替代原始模型,敌手无法直接获取真实数据训练过的原始模型;最后,利用影子数据在影子模型中产生的影子梯度替代真实梯度,使敌手无法获取真实梯度。在CIFAR10和CIFAR100数据集上进行了实验:与添加噪声、梯度裁剪、梯度压缩、表征扰动和局部正则化稀疏化五种防御方案相比,在CIFAR10数据集上所提方案的均方误差(MSE)是对比方案的1.18~5.34倍,特征均方误差(FMSE)是对比方案的4.46~1.03×10^(7)倍,峰值信噪比(PSNR)是对比方案的49.9%~90.8%;在CIFAR100数据集上的MSE是对比方案的1.04~1.06倍,FMSE是对比方案的5.93~4.24×10^(3)倍,PSNR是对比方案的96.0%~97.6%。相较于深度影子防御方法,所提方案考虑了敌手的实际攻击能力和影子模型训练存在的问题,设计了威胁模型和影子模型生成算法,在理论分析和实验方面表现更好,而且能够在保证准确率的前提下有效降低联邦学习隐私泄露风险。 展开更多
关键词 联邦学习 生成对抗网络 梯度反演 隐私保护 防御方案
在线阅读 下载PDF
基于电力云边协同的非侵入式Modbus TCP协议安全增强方法 被引量:6
3
作者 何涂哲秋 徐子东 +1 位作者 车欣 张镇勇 《中国电力》 CSCD 北大核心 2024年第9期53-60,共8页
分布式电源(distributed resources,DR)中智能边缘设备数据传输的安全问题为电力系统带来了安全隐患。Modbus TCP(transmission control protocol)协议作为边缘设备采用的通信手段之一,其协议安全性的不足使得系统易遭到网络空间的攻击... 分布式电源(distributed resources,DR)中智能边缘设备数据传输的安全问题为电力系统带来了安全隐患。Modbus TCP(transmission control protocol)协议作为边缘设备采用的通信手段之一,其协议安全性的不足使得系统易遭到网络空间的攻击。为保障电力设备数据传输安全,对现有安全手段进行整理,分析现有安全手段在DR应用场景下的不足,提出一种非侵入式Modbus TCP协议安全增强方法。该方法采用云边协同的架构,利用电力控制中心云平台管理访问控制原则,将实际访问控制决策模块部署在边缘设备,并通过细粒度的访问控制组合限制恶意行为。依据Modbus协议参考指南,搭建DR应用场景进行渗透测试,验证该方法能有效防御重放攻击和中间人攻击,可将安全开销控制在百微秒以内,显著优于其他安全手段,满足DR对实时性的需求。 展开更多
关键词 Modbus TCP协议 协议安全 分布式电源 访问控制
在线阅读 下载PDF
动态环境下视觉定位与建图的运动分割研究进展 被引量:3
4
作者 朱东莹 钟勇 +1 位作者 杨观赐 李杨 《计算机应用》 CSCD 北大核心 2023年第8期2537-2545,共9页
动态环境中视觉定位与建图系统受环境中动态物体的影响,定位与建图误差增加同时鲁棒性下降。而对输入图像的运动分割可显著提高动态环境下视觉定位与建图系统的性能。动态环境中的动态物体可分为运动物体与潜在运动物体。当前动态物体... 动态环境中视觉定位与建图系统受环境中动态物体的影响,定位与建图误差增加同时鲁棒性下降。而对输入图像的运动分割可显著提高动态环境下视觉定位与建图系统的性能。动态环境中的动态物体可分为运动物体与潜在运动物体。当前动态物体识别方法存在运动主体混乱、实时性差的问题。因此,综述了视觉定位与建图系统在动态环境下的运动分割策略。首先,从场景的预设条件出发,将运动分割策略分为基于图像主体静止假设方法、基于先验语义知识的方法和不引入假设的多传感融合方法;然后,对这三类方法进行总结,并分析各方法的准确性和实时性;最后,针对视觉定位与建图系统在动态环境下运动分割策略的准确性、实时性难以平衡的问题,讨论并展望了动态环境下运动分割方法的发展趋势。 展开更多
关键词 视觉定位与建图 动态环境 运动分割 实时性 移动机器人
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部