射频前端芯片的多功能一体化设计对晶体管模型的功能及其复用能力提出了更高的要求。然而,传统模型无法实现多功能复用,导致模型参数提取步骤多、建模效率低。对此,本文提出了一种基于准物理区划分(Quasi-physical zone division, QPZD...射频前端芯片的多功能一体化设计对晶体管模型的功能及其复用能力提出了更高的要求。然而,传统模型无法实现多功能复用,导致模型参数提取步骤多、建模效率低。对此,本文提出了一种基于准物理区划分(Quasi-physical zone division, QPZD)理论的多功能的器件物理基建模方法,模型具备非线性、噪声和开关特性的表征能力。首先,本文阐述了QPZD的建模原理,分别介绍了基于QPZD的非线性、微波噪声和开关三类单功能模型理论,并基于统一的核心模型方程提出了上述模型的一体化融合方法及其多功能模型架构。其次,介绍了包括自热效应、环境温度效应和陷阱效应在内的色散效应的建模方法。最后,从晶体管在片测试验证和射频前端多功能芯片设计验证两个角度对建立的模型进行了验证。仿真实测对比结果表明,模型的非线性、噪声和开关特性的综合仿真精度大于80.33%。本文的建模方法对多功能射频前端关键芯片的全面和精准设计具有重要的指导意义。展开更多
文摘射频前端芯片的多功能一体化设计对晶体管模型的功能及其复用能力提出了更高的要求。然而,传统模型无法实现多功能复用,导致模型参数提取步骤多、建模效率低。对此,本文提出了一种基于准物理区划分(Quasi-physical zone division, QPZD)理论的多功能的器件物理基建模方法,模型具备非线性、噪声和开关特性的表征能力。首先,本文阐述了QPZD的建模原理,分别介绍了基于QPZD的非线性、微波噪声和开关三类单功能模型理论,并基于统一的核心模型方程提出了上述模型的一体化融合方法及其多功能模型架构。其次,介绍了包括自热效应、环境温度效应和陷阱效应在内的色散效应的建模方法。最后,从晶体管在片测试验证和射频前端多功能芯片设计验证两个角度对建立的模型进行了验证。仿真实测对比结果表明,模型的非线性、噪声和开关特性的综合仿真精度大于80.33%。本文的建模方法对多功能射频前端关键芯片的全面和精准设计具有重要的指导意义。