期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合迁移学习和数据增强的SC-Net模型在皮肤癌识别中的应用 被引量:4
1
作者 左航旭 廖彬 +2 位作者 陈小昆 童洋 李勇 《计算机应用研究》 CSCD 北大核心 2022年第8期2550-2555,2560,共7页
为了解决皮肤癌诊断模型中性能无法满足临床应用要求,对于少数类别诊断精度不高的问题,提出一种基于迁移学习和数据增强的皮肤癌诊断模型SC-Net(skin cancer-net)。首先,引入ECA注意力模块,把DenseNet-201在ImageNet数据集上的预训练模... 为了解决皮肤癌诊断模型中性能无法满足临床应用要求,对于少数类别诊断精度不高的问题,提出一种基于迁移学习和数据增强的皮肤癌诊断模型SC-Net(skin cancer-net)。首先,引入ECA注意力模块,把DenseNet-201在ImageNet数据集上的预训练模型在皮肤癌数据集上进行微调训练并提取图像隐含高层次特征;然后融合一般性统计特征,并且通过SMOTE过采样技术以增强少数类别数据;最后,将数据输入XGBoost模型进行训练,最终得到SC-Net分类模型。实验结果表明,SC-Net模型在准确率、灵敏度、特异度三个指标上达到99.25%、99.25%和99.88%,诊断准确率相对于已有文献精度提升约0.6%~18.7%,并且对于皮肤纤维瘤、光化性角化病等少数类别具备更强的分类能力。 展开更多
关键词 皮肤癌诊断 DenseNet-201模型 XGBoost模型 特征融合 数据增强 注意力机制 少数类识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部