期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于图形表示的异构超密集网络的机器学习技术研究
被引量:
3
1
作者
樊聪敏
张颖珺
+1 位作者
袁晓军
李思贤
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2020年第6期826-836,共11页
异构超密集网络(H-UDN)被认为是一种通过网络密集化来维持爆炸性的移动业务需求的解决方案。通过将接入点、处理器和存储单元放置得尽可能靠近移动用户,H-UDN带来了许多优势,包括较高的频谱利用率、较高的能量利用率和低延迟。尽管如此,...
异构超密集网络(H-UDN)被认为是一种通过网络密集化来维持爆炸性的移动业务需求的解决方案。通过将接入点、处理器和存储单元放置得尽可能靠近移动用户,H-UDN带来了许多优势,包括较高的频谱利用率、较高的能量利用率和低延迟。尽管如此,H-UDNs中网络实体的高密度和多样性给协同信号的处理和资源管理带来了巨大的设计挑战。该文阐述了机器学习技术在解决这些挑战方面的巨大潜力。特别地,展示了如何利用H-UDN的图形表示来设计有效的机器学习算法。
展开更多
关键词
深度学习
图形表式
异构超密集网络
机器学习
在线阅读
下载PDF
职称材料
题名
基于图形表示的异构超密集网络的机器学习技术研究
被引量:
3
1
作者
樊聪敏
张颖珺
袁晓军
李思贤
机构
香港中文
大学
信息工程学院
电子科技大学智能通信与网络研究中心
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2020年第6期826-836,共11页
基金
广东省重点领域研发计划(2018B010114001)。
文摘
异构超密集网络(H-UDN)被认为是一种通过网络密集化来维持爆炸性的移动业务需求的解决方案。通过将接入点、处理器和存储单元放置得尽可能靠近移动用户,H-UDN带来了许多优势,包括较高的频谱利用率、较高的能量利用率和低延迟。尽管如此,H-UDNs中网络实体的高密度和多样性给协同信号的处理和资源管理带来了巨大的设计挑战。该文阐述了机器学习技术在解决这些挑战方面的巨大潜力。特别地,展示了如何利用H-UDN的图形表示来设计有效的机器学习算法。
关键词
深度学习
图形表式
异构超密集网络
机器学习
Keywords
deep learning
graphical representations
heterogeneous ultra-dense network
machine learning
分类号
TN92 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于图形表示的异构超密集网络的机器学习技术研究
樊聪敏
张颖珺
袁晓军
李思贤
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2020
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部