Ga N高电子迁移率晶体管(HEMT)具有大的禁带宽度、高电子饱和速度、异质结界面的高二维电子气浓度、高击穿电压以及高的热导率,这一系列特性使它在高频、高功率、高温等领域得到了广泛的认可。本文首先论述了制约氮化镓高电子迁移率晶...Ga N高电子迁移率晶体管(HEMT)具有大的禁带宽度、高电子饱和速度、异质结界面的高二维电子气浓度、高击穿电压以及高的热导率,这一系列特性使它在高频、高功率、高温等领域得到了广泛的认可。本文首先论述了制约氮化镓高电子迁移率晶体管器件性能提高所遇到的问题及解决方法;然后,着重从优化材料结构设计和器件结构设计的角度,阐述了氮化镓高电子迁移率晶体管器件在高频高功率领域的最新研究进展;最后,讨论了器件进一步发展的方向。展开更多
采用空穴传输兼发光层CBP和电子传输兼发光层TAZ构建了紫外有机电致发光器件(UVOLED),通过调控功能层厚度可以优化激子形成区域,进而改善器件性能。实验结果表明:CBP厚度的变化对器件性能影响甚微,而TAZ厚度变化则有显著影响。当CBP...采用空穴传输兼发光层CBP和电子传输兼发光层TAZ构建了紫外有机电致发光器件(UVOLED),通过调控功能层厚度可以优化激子形成区域,进而改善器件性能。实验结果表明:CBP厚度的变化对器件性能影响甚微,而TAZ厚度变化则有显著影响。当CBP和TAZ厚度分别为50 nm和30 nm时,获得了最大辐照度为4.4 m W/cm2@270 m A/cm2、外量子效率(EQE)为0.94%@12.5 m A/cm2,发光来自于CBP主发光峰~410nm以及TAZ肩峰~380 nm的UVOLED器件。在此基础上,通过在CBP/TAZ界面引入超薄[CBP∶TAZ]掺杂层可以加速激子复合,降低器件驱动电压,同时还有利于改善载流子平衡性,提高发光效率(最大EQE达到了0.97%@20 m A/cm2)而不影响光谱特性。展开更多
文摘采用空穴传输兼发光层CBP和电子传输兼发光层TAZ构建了紫外有机电致发光器件(UVOLED),通过调控功能层厚度可以优化激子形成区域,进而改善器件性能。实验结果表明:CBP厚度的变化对器件性能影响甚微,而TAZ厚度变化则有显著影响。当CBP和TAZ厚度分别为50 nm和30 nm时,获得了最大辐照度为4.4 m W/cm2@270 m A/cm2、外量子效率(EQE)为0.94%@12.5 m A/cm2,发光来自于CBP主发光峰~410nm以及TAZ肩峰~380 nm的UVOLED器件。在此基础上,通过在CBP/TAZ界面引入超薄[CBP∶TAZ]掺杂层可以加速激子复合,降低器件驱动电压,同时还有利于改善载流子平衡性,提高发光效率(最大EQE达到了0.97%@20 m A/cm2)而不影响光谱特性。