期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
密度峰值优化的球簇划分欠采样不平衡数据分类算法
被引量:
14
1
作者
刘学文
王继奎
+4 位作者
杨正国
李强
易纪海
李冰
聂飞平
《计算机应用》
CSCD
北大核心
2022年第5期1455-1463,共9页
在集成算法中嵌入代价敏感和重采样方法是一种有效的不平衡数据分类混合策略。针对现有混合方法中误分代价计算和欠采样过程较少考虑样本的类内与类间分布的问题,提出了一种密度峰值优化的球簇划分欠采样不平衡数据分类算法DPBCPUSBoos...
在集成算法中嵌入代价敏感和重采样方法是一种有效的不平衡数据分类混合策略。针对现有混合方法中误分代价计算和欠采样过程较少考虑样本的类内与类间分布的问题,提出了一种密度峰值优化的球簇划分欠采样不平衡数据分类算法DPBCPUSBoost。首先,利用密度峰值信息定义多数类样本的抽样权重,将存在“近邻簇”的多数类球簇划分为“易误分区域”和“难误分区域”,并提高“易误分区域”内样本的抽样权重;其次,在初次迭代过程中按照抽样权重对多数类样本进行欠采样,之后每轮迭代中按样本分布权重对多数类样本进行欠采样,并把欠采样后的多数类样本与少数类样本组成临时训练集并训练弱分类器;最后,结合样本的密度峰值信息与类别分布为所有样本定义不同的误分代价,并通过代价调整函数增加高误分代价样本的权重。在10个KEEL数据集上的实验结果表明,与现有自适应增强(AdaBoost)、代价敏感自适应增强(AdaCost)、随机欠采样增强(RUSBoost)和代价敏感欠采样自适应增强(USCBoost)等不平衡数据分类算法相比,DPBCPUSBoost在准确率(Accuracy)、F1分数(F1-Score)、几何均值(G-mean)和受试者工作特征(ROC)曲线下的面积(AUC)指标上获得最高性能的数据集数量均多于对比算法。实验结果验证了DPBCPUSBoost中样本误分代价和抽样权重定义的有效性。
展开更多
关键词
不平衡数据分类
密度峰值
球聚类
代价敏感
欠采样
在线阅读
下载PDF
职称材料
题名
密度峰值优化的球簇划分欠采样不平衡数据分类算法
被引量:
14
1
作者
刘学文
王继奎
杨正国
李强
易纪海
李冰
聂飞平
机构
兰州
财经
大学
信息工程学院
甘肃省
电子
商务
技术与
应用
重点
实验室
(
兰州
财经
大学
)
西北工业
大学
光学影像分析与学习中心
出处
《计算机应用》
CSCD
北大核心
2022年第5期1455-1463,共9页
基金
国家自然科学基金资助项目(61772427)
甘肃省高等学校创新能力提升资助项目(2021B-145,2021B-147)
+1 种基金
甘肃省自然科学基金资助项目(17JR5RA177)
甘肃省重点研发计划项目(21YF5FA087)。
文摘
在集成算法中嵌入代价敏感和重采样方法是一种有效的不平衡数据分类混合策略。针对现有混合方法中误分代价计算和欠采样过程较少考虑样本的类内与类间分布的问题,提出了一种密度峰值优化的球簇划分欠采样不平衡数据分类算法DPBCPUSBoost。首先,利用密度峰值信息定义多数类样本的抽样权重,将存在“近邻簇”的多数类球簇划分为“易误分区域”和“难误分区域”,并提高“易误分区域”内样本的抽样权重;其次,在初次迭代过程中按照抽样权重对多数类样本进行欠采样,之后每轮迭代中按样本分布权重对多数类样本进行欠采样,并把欠采样后的多数类样本与少数类样本组成临时训练集并训练弱分类器;最后,结合样本的密度峰值信息与类别分布为所有样本定义不同的误分代价,并通过代价调整函数增加高误分代价样本的权重。在10个KEEL数据集上的实验结果表明,与现有自适应增强(AdaBoost)、代价敏感自适应增强(AdaCost)、随机欠采样增强(RUSBoost)和代价敏感欠采样自适应增强(USCBoost)等不平衡数据分类算法相比,DPBCPUSBoost在准确率(Accuracy)、F1分数(F1-Score)、几何均值(G-mean)和受试者工作特征(ROC)曲线下的面积(AUC)指标上获得最高性能的数据集数量均多于对比算法。实验结果验证了DPBCPUSBoost中样本误分代价和抽样权重定义的有效性。
关键词
不平衡数据分类
密度峰值
球聚类
代价敏感
欠采样
Keywords
imbalanced data classification
density peak
ball clustering
cost-sensitive
undersampling
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
密度峰值优化的球簇划分欠采样不平衡数据分类算法
刘学文
王继奎
杨正国
李强
易纪海
李冰
聂飞平
《计算机应用》
CSCD
北大核心
2022
14
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部