叶面积指数(leaf area index,LAI)作为衡量作物生长状况的关键参数,对其进行精准高效的反演对于作物监测、产量预测等活动至关重要。然而,传统经验模型在估算LAI时常存在计算负荷重、泛化能力弱等问题。为实现青贮玉米多时序LAI精准、...叶面积指数(leaf area index,LAI)作为衡量作物生长状况的关键参数,对其进行精准高效的反演对于作物监测、产量预测等活动至关重要。然而,传统经验模型在估算LAI时常存在计算负荷重、泛化能力弱等问题。为实现青贮玉米多时序LAI精准、高效估算,该研究以甘肃省民乐县的大田青贮玉米LAI为研究对象,结合Landsat-8多光谱影像与同期实地采集的LAI数据,提出了4种基于EFAST全局敏感性分析方法的机器学习混合反演模型(MLP-PROSAIL、SVR-PROSAIL、RF-PROSAIL和GBM-PROSAIL)。通过对PROSAIL模型的输入参数进行敏感性分析,以便确定参数敏感度并准确模拟输出冠层反射率光谱。进一步对Landsat-8多光谱数据进行预处理和波段变换,并采用地理配准工具结合反距离加权插值的策略减少其尺度差异。同时利用贝叶斯超参数寻优和正则化技术优化模型不同的参数类型和激活函数,得到4种改进模型用于训练LAI与光谱数据,通过5折交叉验证法和留一验证法对4种模型的反演性能进行验证并选出最优模型。优化后的模型性能均有明显提升,其中,GBM-PROSAIL模型反演性能最优,拟合精度R^(2)为0.93、均方根误差(RMSE)为0.42。MLP-PROSAIL、SVR-PROSAIL和RF-PROSAIL模型的拟合精度R^(2)依次为0.85、0.88、0.90,RMSE依次为0.80、0.69、0.51。根据GBM-PROSAIL模型绘制的研究区多时序LAI反演空间分布结果表明:不同生长期青贮玉米LAI值存在明显差异,能较好反映其生长过程。该研究提出的混合反演模型具有较高的性能及较强的鲁棒性,可为多时序、大尺度作物监测、产量预测相关研究提供方法与思路。展开更多
为研究极端干旱对牧草生长的影响,选择多年生黑麦草(Lolium perenne,Lp)和雀麦(Bromus valdivianus,Bv)给予80%~85%植物有效水(Plant available water,PAW)和20%~25%PAW 2种水分处理,分析两种牧草生长及体内水分状况对干旱胁迫的响应。...为研究极端干旱对牧草生长的影响,选择多年生黑麦草(Lolium perenne,Lp)和雀麦(Bromus valdivianus,Bv)给予80%~85%植物有效水(Plant available water,PAW)和20%~25%PAW 2种水分处理,分析两种牧草生长及体内水分状况对干旱胁迫的响应。研究表明:80%~85%PAW充足水分下,两种牧草生物量积累、水势(Water potential,WP)、相对含水量(Relative water content,RWC)和净光合速率(Net photosynthetic rate,Pn)无明显种间差异。Bv叶片宽而重,蒸腾速率(Transpiration rate,Tr)、CO_(2)总导度(Total conductance to CO_(2),CndCO_(2))和气孔导度(Conductance to H 2O,Gs)显著高于Lp。而Lp分蘗多、叶多汁,瞬时水分利用效率是Bv的1.63倍。20%~25%PAW对两种牧草生长影响不完全一致,叶饱和重、干重和叶面积有相反变化趋势,但与充足水分相比差异不显著;Pn,Tr,CndCO_(2),Gs和RWC则极显著降低,WP极显著降低了1.60 MPa,致使枯叶占比和叶温差显著升高。总之,雀麦和多年生黑麦草生长相近,水分利用模式不同;遭受极端干旱,不同种的两种牧草耐旱机制具有一定的共性,通过增强叶片持水力、降低水分循环、减少蒸腾失水以提高牧草抗旱性。展开更多
文摘叶面积指数(leaf area index,LAI)作为衡量作物生长状况的关键参数,对其进行精准高效的反演对于作物监测、产量预测等活动至关重要。然而,传统经验模型在估算LAI时常存在计算负荷重、泛化能力弱等问题。为实现青贮玉米多时序LAI精准、高效估算,该研究以甘肃省民乐县的大田青贮玉米LAI为研究对象,结合Landsat-8多光谱影像与同期实地采集的LAI数据,提出了4种基于EFAST全局敏感性分析方法的机器学习混合反演模型(MLP-PROSAIL、SVR-PROSAIL、RF-PROSAIL和GBM-PROSAIL)。通过对PROSAIL模型的输入参数进行敏感性分析,以便确定参数敏感度并准确模拟输出冠层反射率光谱。进一步对Landsat-8多光谱数据进行预处理和波段变换,并采用地理配准工具结合反距离加权插值的策略减少其尺度差异。同时利用贝叶斯超参数寻优和正则化技术优化模型不同的参数类型和激活函数,得到4种改进模型用于训练LAI与光谱数据,通过5折交叉验证法和留一验证法对4种模型的反演性能进行验证并选出最优模型。优化后的模型性能均有明显提升,其中,GBM-PROSAIL模型反演性能最优,拟合精度R^(2)为0.93、均方根误差(RMSE)为0.42。MLP-PROSAIL、SVR-PROSAIL和RF-PROSAIL模型的拟合精度R^(2)依次为0.85、0.88、0.90,RMSE依次为0.80、0.69、0.51。根据GBM-PROSAIL模型绘制的研究区多时序LAI反演空间分布结果表明:不同生长期青贮玉米LAI值存在明显差异,能较好反映其生长过程。该研究提出的混合反演模型具有较高的性能及较强的鲁棒性,可为多时序、大尺度作物监测、产量预测相关研究提供方法与思路。
文摘为研究极端干旱对牧草生长的影响,选择多年生黑麦草(Lolium perenne,Lp)和雀麦(Bromus valdivianus,Bv)给予80%~85%植物有效水(Plant available water,PAW)和20%~25%PAW 2种水分处理,分析两种牧草生长及体内水分状况对干旱胁迫的响应。研究表明:80%~85%PAW充足水分下,两种牧草生物量积累、水势(Water potential,WP)、相对含水量(Relative water content,RWC)和净光合速率(Net photosynthetic rate,Pn)无明显种间差异。Bv叶片宽而重,蒸腾速率(Transpiration rate,Tr)、CO_(2)总导度(Total conductance to CO_(2),CndCO_(2))和气孔导度(Conductance to H 2O,Gs)显著高于Lp。而Lp分蘗多、叶多汁,瞬时水分利用效率是Bv的1.63倍。20%~25%PAW对两种牧草生长影响不完全一致,叶饱和重、干重和叶面积有相反变化趋势,但与充足水分相比差异不显著;Pn,Tr,CndCO_(2),Gs和RWC则极显著降低,WP极显著降低了1.60 MPa,致使枯叶占比和叶温差显著升高。总之,雀麦和多年生黑麦草生长相近,水分利用模式不同;遭受极端干旱,不同种的两种牧草耐旱机制具有一定的共性,通过增强叶片持水力、降低水分循环、减少蒸腾失水以提高牧草抗旱性。