抽采瓦斯气分离产物特性精确获取是水合分离新技术应用关键。针对两种浓度构成的瓦斯混合气(CO2—CH4—N2),利用瓦斯水合分离产物Raman测试装置,原位合成两种水合物样品并观测Raman光谱。基于客体分子振动模式、"松笼-紧笼"...抽采瓦斯气分离产物特性精确获取是水合分离新技术应用关键。针对两种浓度构成的瓦斯混合气(CO2—CH4—N2),利用瓦斯水合分离产物Raman测试装置,原位合成两种水合物样品并观测Raman光谱。基于客体分子振动模式、"松笼-紧笼"模型及Raman谱带面积比,结合van der Waals-Platteeuw模型,确定出水合物晶体结构,计算出晶体孔穴占有率、水合指数等结构参数。结果表明,两种瓦斯水合物样品均为Ⅰ型结构,其大孔穴占有率分别为98.57%和98.52%,小孔穴占有率分别为29.93%和33.87%,小孔穴不易被客体分子填充;两种分离产物水合指数比较接近,分别为7.14和6.98,均大于Ⅰ型水合物水合指数理论值。展开更多
瓦斯水合物微观晶体结构研究对水合分离技术具有重要理论意义。利用Raman光谱技术对三种含高浓度CO2瓦斯混合气水合反应过程进行在线观测,并对水合物相Raman光谱图进行分析,获取了瓦斯水合物不同生长阶段大、小孔穴占有率,同时利用van d...瓦斯水合物微观晶体结构研究对水合分离技术具有重要理论意义。利用Raman光谱技术对三种含高浓度CO2瓦斯混合气水合反应过程进行在线观测,并对水合物相Raman光谱图进行分析,获取了瓦斯水合物不同生长阶段大、小孔穴占有率,同时利用van der Waals与Platteeuw热力学统计模型间接获得水合指数等晶体结构信息。结果表明,瓦斯水合物孔穴占有率及水合指数在水合物不同生长阶段未发生较大变化,水合物相中大孔穴几乎被客体分子填满,CO2与CH4分子共同占据大孔穴,但CO2占绝大多数,达到78.58%-94.09%,CH4分子仅为4.52%-19.12%,这主要是由于两种分子间存在竞争关系且气样中CO2浓度明显高于CH4,大孔穴占有率维持在97.70%-98.68%;小孔穴占有率为17.93%-82.41%,占有率普遍偏低,且仅有CH4分子;随气样中CH4浓度增加,CH4在大、小孔穴中的占有率均有所增加,且CH4分子在大孔穴中的占有率均明显低于在小孔穴中占有率;水合物生长不同阶段水合指数为6.13-7.33,随气样中CH4浓度的增加,小孔穴占有率有所增加,致使水合指数随之降低;由于瓦斯水合物生长分布不均匀,三种气样对应的不同生长阶段水合指数均呈不规则变化。展开更多
基于煤矿瓦斯(CH_4∶C_2H_6∶N_2=67.5∶22.5∶10)水合物相平衡曲线开展四种驱动力ΔP水合动力学实验,利用可见显微Raman光谱仪获取水合物生长过程光谱图,根据水合物相中C_2H_6 C—C键伸缩振动特征峰Raman位移确定了4组实验中水合物为s...基于煤矿瓦斯(CH_4∶C_2H_6∶N_2=67.5∶22.5∶10)水合物相平衡曲线开展四种驱动力ΔP水合动力学实验,利用可见显微Raman光谱仪获取水合物生长过程光谱图,根据水合物相中C_2H_6 C—C键伸缩振动特征峰Raman位移确定了4组实验中水合物为sⅡ结构。基于van der Waals与Platteeuw模型获取瓦斯水合物生成过程中水合物相气体组分及水合指数变化规律。研究表明:驱动力的大小影响水合物的稳定性,随着驱动力的增加,CH_4相比C_2H_6逐渐占据更多的孔穴结构,CH_4在水合物相内比例增加,水合物稳定性越强;瓦斯中N_2,CH_4和C_2H_6进入水合物孔穴优先级可以通过分子与水合物孔穴的直径比进行确定,分析认为在sⅡ水合物结构中小孔穴CH_4优先级最高,大孔穴C_2H_6最高;基于瓦斯水合物稳定性,对水合物生长过程客体分子的物质传递规律进行描述,为瓦斯水合物的微观生长提供理论基础。展开更多
文摘抽采瓦斯气分离产物特性精确获取是水合分离新技术应用关键。针对两种浓度构成的瓦斯混合气(CO2—CH4—N2),利用瓦斯水合分离产物Raman测试装置,原位合成两种水合物样品并观测Raman光谱。基于客体分子振动模式、"松笼-紧笼"模型及Raman谱带面积比,结合van der Waals-Platteeuw模型,确定出水合物晶体结构,计算出晶体孔穴占有率、水合指数等结构参数。结果表明,两种瓦斯水合物样品均为Ⅰ型结构,其大孔穴占有率分别为98.57%和98.52%,小孔穴占有率分别为29.93%和33.87%,小孔穴不易被客体分子填充;两种分离产物水合指数比较接近,分别为7.14和6.98,均大于Ⅰ型水合物水合指数理论值。
文摘瓦斯水合物微观晶体结构研究对水合分离技术具有重要理论意义。利用Raman光谱技术对三种含高浓度CO2瓦斯混合气水合反应过程进行在线观测,并对水合物相Raman光谱图进行分析,获取了瓦斯水合物不同生长阶段大、小孔穴占有率,同时利用van der Waals与Platteeuw热力学统计模型间接获得水合指数等晶体结构信息。结果表明,瓦斯水合物孔穴占有率及水合指数在水合物不同生长阶段未发生较大变化,水合物相中大孔穴几乎被客体分子填满,CO2与CH4分子共同占据大孔穴,但CO2占绝大多数,达到78.58%-94.09%,CH4分子仅为4.52%-19.12%,这主要是由于两种分子间存在竞争关系且气样中CO2浓度明显高于CH4,大孔穴占有率维持在97.70%-98.68%;小孔穴占有率为17.93%-82.41%,占有率普遍偏低,且仅有CH4分子;随气样中CH4浓度增加,CH4在大、小孔穴中的占有率均有所增加,且CH4分子在大孔穴中的占有率均明显低于在小孔穴中占有率;水合物生长不同阶段水合指数为6.13-7.33,随气样中CH4浓度的增加,小孔穴占有率有所增加,致使水合指数随之降低;由于瓦斯水合物生长分布不均匀,三种气样对应的不同生长阶段水合指数均呈不规则变化。
文摘基于煤矿瓦斯(CH_4∶C_2H_6∶N_2=67.5∶22.5∶10)水合物相平衡曲线开展四种驱动力ΔP水合动力学实验,利用可见显微Raman光谱仪获取水合物生长过程光谱图,根据水合物相中C_2H_6 C—C键伸缩振动特征峰Raman位移确定了4组实验中水合物为sⅡ结构。基于van der Waals与Platteeuw模型获取瓦斯水合物生成过程中水合物相气体组分及水合指数变化规律。研究表明:驱动力的大小影响水合物的稳定性,随着驱动力的增加,CH_4相比C_2H_6逐渐占据更多的孔穴结构,CH_4在水合物相内比例增加,水合物稳定性越强;瓦斯中N_2,CH_4和C_2H_6进入水合物孔穴优先级可以通过分子与水合物孔穴的直径比进行确定,分析认为在sⅡ水合物结构中小孔穴CH_4优先级最高,大孔穴C_2H_6最高;基于瓦斯水合物稳定性,对水合物生长过程客体分子的物质传递规律进行描述,为瓦斯水合物的微观生长提供理论基础。