期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于经验小波变换的鄱阳湖COD_(Mn)预测 被引量:4
1
作者 陈伟 金柱成 +3 位作者 俞真元 王晓丽 彭士涛 魏燕杰 《环境工程技术学报》 CAS CSCD 北大核心 2023年第1期180-187,共8页
高锰酸盐指数(COD_(Mn))是衡量水质状况的最重要参数之一,能反映水体受还原性物质污染的程度。结合经验小波变换(EWT)和双向长短期记忆(BLSTM)神经网络,提出了一种先利用EWT将原始的COD_(Mn)时间序列分解成若干成分,然后利用BLSTM神经... 高锰酸盐指数(COD_(Mn))是衡量水质状况的最重要参数之一,能反映水体受还原性物质污染的程度。结合经验小波变换(EWT)和双向长短期记忆(BLSTM)神经网络,提出了一种先利用EWT将原始的COD_(Mn)时间序列分解成若干成分,然后利用BLSTM神经网络对分解出来的每个成分进行预测,最后将所有成分的预测结果重建获得最终COD_(Mn)预测值的新的混合模型EWT-BLSTM;并以2017年8月—2020年4月鄱阳湖COD_(Mn)监测数据为研究对象,进行模型性能验证。结果表明:EWTBLSTM模型具有良好的预测性能,预测未来1 d以后的COD_(Mn)时,EWT-BLSTM模型的平均绝对百分比误差为2.25%,与单一BLSTM神经网络模型相比降低了10.53%;预测未来7 d以后的COD_(Mn)时,EWT-BLSTM模型的平均绝对百分比误差为8.36%,与单一BLSTM神经网络模型相比降低了16.16%。在COD_(Mn)峰值处,该模型依然保持较高稳定的预测性能,说明在数据相对复杂、极端的情况下,该模型依然适用。 展开更多
关键词 水质预测 COD_(Mn) 经验小波变换(EWT) 双向长短期记忆(BLSTM) 机器学习 数学模拟 鄱阳湖
在线阅读 下载PDF
基于双向门控循环单元的地表水氨氮预测 被引量:3
2
作者 任永琴 金柱成 +2 位作者 俞真元 王晓丽 彭士涛 《中国环境科学》 EI CAS CSCD 北大核心 2022年第2期672-679,共8页
为提高水环境中NH_(4)^(+)-N的预测精度,提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合预测模型(CCB).首先,通过CCEEMDAN将NH_(4)^(+)-N数据分解成一系列较为简单的模态成份;然后利用BiGRU神... 为提高水环境中NH_(4)^(+)-N的预测精度,提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合预测模型(CCB).首先,通过CCEEMDAN将NH_(4)^(+)-N数据分解成一系列较为简单的模态成份;然后利用BiGRU神经网络对各成份进行预测,将所有分解成份的预测结果相加即可获得最终预测结果.以2017年6月~2020年2月鄱阳湖的NH_(4)^(+)-N数据进行模型性能验证.结果表明,利用CCB模型在1d后的NH_(4)^(+)-N预测中平均绝对百分比误差为3.38%,在7d后的NH_(4)^(+)-N预测中平均绝对百分比误差为6.82%,在15d后的NH_(4)^(+)-N预测中平均绝对百分比误差为9.41%,优于本文中参与比较的其他模型.CCB模型在NH_(4)^(+)-N预测方面具有良好的预测性能. 展开更多
关键词 鄱阳湖 氨氮(NH_(4)^(+)-N) 互补完全集合经验模式分解(CCEEMDAN) 双向门控循环单元(BiGRU)
在线阅读 下载PDF
基于双层数据分解混合模型预测鄱阳湖COD 被引量:2
3
作者 陈伟 金柱成 +4 位作者 俞真元 王晓丽 彭士涛 朱哲 魏燕杰 《农业工程学报》 EI CAS CSCD 北大核心 2022年第5期296-302,共7页
化学需氧量(Chemical Oxygen Demand,COD)是衡量水质状况的最重要参数之一,反映水体受还原性物质污染的程度。该研究采用改进的完全集合经验模式分解(Improved Complete Ensemble Empirical Mode Decomposition With Adaptive Noise,ICE... 化学需氧量(Chemical Oxygen Demand,COD)是衡量水质状况的最重要参数之一,反映水体受还原性物质污染的程度。该研究采用改进的完全集合经验模式分解(Improved Complete Ensemble Empirical Mode Decomposition With Adaptive Noise,ICEEMDAN)、变分模式分解(Variational Mode Decomposition,VMD)相结合的双层数据分解算法,并利用双向长短期记忆(Bidirectional Long Short-term Memory,BLSTM)神经网络,提出了一种混合模型IVB(Improved Complete Ensemble Empirical Mode Decomposition With Adaptive Noise-Variational Mode Decomposition-Bidirectional Long Short-term Memory),并以鄱阳湖高锰酸盐指数(Permanganate index,COD_(Mn))监测数据为研究对象,进行案例研究。结果表明,IVB模型具有良好的预测性能:1 d以后的COD_(Mn)预测中,IVB模型的平均绝对百分比误差为2.21%,与单一BLSTM神经网络模型相比降低了10.57个百分点,而与IB(Improved Complete Ensemble Empirical Mode Decomposition With Adaptive Noise-Bidirectional Long Short-term Memory)模型相比降低了4.62个百分点;7 d以后的COD_(Mn)预测中,IVB模型的平均绝对百分比误差为8.18%,与单一BLSTM神经网络模型相比降低了16.34个百分点,而与IB模型相比降低了4.68个百分点。这项研究表明,所开发的IVB模型可以用作水资源管理的有效分析与决策工具。 展开更多
关键词 水质 机器学习 COD 数据分解 样本熵(SE)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部