为了加强大面积范围内未利用地监管,提出通过遥感技术识别存在潜在污染的未利用地.以甘肃省北部地区为研究区,首先,基于Landsat卫星数据进行土地利用/覆被类型遥感解译,确定该区域未利用土地范围.其次,对图像进行主成分分析,将第一主分...为了加强大面积范围内未利用地监管,提出通过遥感技术识别存在潜在污染的未利用地.以甘肃省北部地区为研究区,首先,基于Landsat卫星数据进行土地利用/覆被类型遥感解译,确定该区域未利用土地范围.其次,对图像进行主成分分析,将第一主分量作为灰度共生矩阵的数据源,选用能量、熵、惯性矩、相关作为特征量,同时结合对应图像的灰度变化绝对值提取变化较大的区域.最后,通过对比2010年和2015年Landsat遥感图像的特征量变化情况,提取有明显纹理或灰度变化区域,结合Google Earth高分辨率影像与包含工矿企业位置信息的感兴趣点(point of interest,POI)数据,得到2010—2015年此区域土壤疑似污染点40处,总面积约为10 km2.对其中21处结果进行实地调查验证,其中有19处疑似污染点被证实,识别精度约为90%.提出的基于灰度共生矩阵方法识别未利用地疑似污染的方法,较传统人工解译方法,能够显著节省人力、物力,提高监测效率,并且具有较好的精度.展开更多
农业干旱监测问题对农业生产具有重要影响,因此精确监测农业干旱具有现实意义。该研究基于MOD16A2全球蒸散产品,计算作物缺水指数(Crop Water Stress Index,CWSI),结合地表温度、植被指数、降水量以及土壤湿度等多源遥感数据为自变量,以...农业干旱监测问题对农业生产具有重要影响,因此精确监测农业干旱具有现实意义。该研究基于MOD16A2全球蒸散产品,计算作物缺水指数(Crop Water Stress Index,CWSI),结合地表温度、植被指数、降水量以及土壤湿度等多源遥感数据为自变量,以3个月时间尺度的标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI-3)为因变量,基于偏差校正随机森林算法构建山东省2000—2019年作物生长季(4—10月)的偏差校正随机森林干旱状况指数(Bias-corrected Random Forest Drought Condition Index,BRF-DCI)。并分析CWSI对于构建山东省农业干旱监测模型的影响。结果表明:加入CWSI后,所提出的BRF-DCI指数与SPEI-3观测指数的决定系数为0.72~0.85,优于未加入CWSI之前;加入CWSI后提高了干旱等级监测的准确率;BRF-DCI指数能较好地拟合各月份的SPEI-3指数,决定系数均在0.94以上;BRF-DCI指数能够准确反映山东省典型干旱年的干旱情况,有效监测山东省农业干旱情况。该研究对山东省农业旱情监测及旱灾防御具有较大的应用潜力。展开更多
针对传统基于遥感影像数据提取网箱信息中存在的精度低、“异物同谱”、“椒盐”噪声等问题。基于高分二号卫星(Gaofen-2 satellite,GF-2)数据,提出了一种改进的双支网络模型网箱信息提取方法。该模型在空间编码路径上利用密集连接块提...针对传统基于遥感影像数据提取网箱信息中存在的精度低、“异物同谱”、“椒盐”噪声等问题。基于高分二号卫星(Gaofen-2 satellite,GF-2)数据,提出了一种改进的双支网络模型网箱信息提取方法。该模型在空间编码路径上利用密集连接块提取网箱的空间特征信息,在全局编码路径上利用全局平均池化快速获得网箱的全局上下文信息,最终通过特征融合来丰富网箱空间细节特征信息和深层判别特征信息,提高了网箱的提取精度。本文方法在精确率、交并比(intersection over union,IOU)和F1分数这3个评价指标上分别取得了87.37%,72.56%和82.47%的得分,与精度最高的传统方法相比分别提高了7.82,4.12和4.64百分点,与经典的深度学习模型相比较在IOU和F1上也取得了8.43和8.69百分点的提高。实验表明,这一方法能很好地满足海水网箱养殖区的提取工作,此方法可以为近海海水网箱养殖业的监管和调控提供技术支持。展开更多
文摘为了加强大面积范围内未利用地监管,提出通过遥感技术识别存在潜在污染的未利用地.以甘肃省北部地区为研究区,首先,基于Landsat卫星数据进行土地利用/覆被类型遥感解译,确定该区域未利用土地范围.其次,对图像进行主成分分析,将第一主分量作为灰度共生矩阵的数据源,选用能量、熵、惯性矩、相关作为特征量,同时结合对应图像的灰度变化绝对值提取变化较大的区域.最后,通过对比2010年和2015年Landsat遥感图像的特征量变化情况,提取有明显纹理或灰度变化区域,结合Google Earth高分辨率影像与包含工矿企业位置信息的感兴趣点(point of interest,POI)数据,得到2010—2015年此区域土壤疑似污染点40处,总面积约为10 km2.对其中21处结果进行实地调查验证,其中有19处疑似污染点被证实,识别精度约为90%.提出的基于灰度共生矩阵方法识别未利用地疑似污染的方法,较传统人工解译方法,能够显著节省人力、物力,提高监测效率,并且具有较好的精度.
文摘针对传统基于遥感影像数据提取网箱信息中存在的精度低、“异物同谱”、“椒盐”噪声等问题。基于高分二号卫星(Gaofen-2 satellite,GF-2)数据,提出了一种改进的双支网络模型网箱信息提取方法。该模型在空间编码路径上利用密集连接块提取网箱的空间特征信息,在全局编码路径上利用全局平均池化快速获得网箱的全局上下文信息,最终通过特征融合来丰富网箱空间细节特征信息和深层判别特征信息,提高了网箱的提取精度。本文方法在精确率、交并比(intersection over union,IOU)和F1分数这3个评价指标上分别取得了87.37%,72.56%和82.47%的得分,与精度最高的传统方法相比分别提高了7.82,4.12和4.64百分点,与经典的深度学习模型相比较在IOU和F1上也取得了8.43和8.69百分点的提高。实验表明,这一方法能很好地满足海水网箱养殖区的提取工作,此方法可以为近海海水网箱养殖业的监管和调控提供技术支持。