通过水热法制备了SnS_(2)/还原氧化石墨烯(SnS_(2)/RGO)复合材料,采用X射线衍射谱(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和N2吸附-脱附表征SnS_(2)/RGO复合材料的物相晶型、化学基团、元素组成和比表面积与孔隙孔径。SnS_(2)/RG...通过水热法制备了SnS_(2)/还原氧化石墨烯(SnS_(2)/RGO)复合材料,采用X射线衍射谱(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和N2吸附-脱附表征SnS_(2)/RGO复合材料的物相晶型、化学基团、元素组成和比表面积与孔隙孔径。SnS_(2)/RGO复合材料作为锂离子电池负极材料组装纽扣电池。结果表明:电流密度100 m A/g条件下,SnS_(2)/RGO复合材料的充放电比容量明显高于纯SnS_(2),SnS_(2)/RGO复合材料第一次放电比容量高达2803 m Ah/g,表现出优异的电化学性能。循环100次后放电比容量仍然可以达到941 mAh/g,而循环100次后纯SnS_(2)的放电比容量远低于SnS_(2)/RGO复合材料,仅为198 m Ah/g,表现出良好的循环稳定性。1 000 m A/g的高电流密度下,SnS_(2)/RGO复合材料放电比容量依然可以达到696 mAh/g,表现出良好的倍率性能。展开更多
文摘通过水热法制备了SnS_(2)/还原氧化石墨烯(SnS_(2)/RGO)复合材料,采用X射线衍射谱(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和N2吸附-脱附表征SnS_(2)/RGO复合材料的物相晶型、化学基团、元素组成和比表面积与孔隙孔径。SnS_(2)/RGO复合材料作为锂离子电池负极材料组装纽扣电池。结果表明:电流密度100 m A/g条件下,SnS_(2)/RGO复合材料的充放电比容量明显高于纯SnS_(2),SnS_(2)/RGO复合材料第一次放电比容量高达2803 m Ah/g,表现出优异的电化学性能。循环100次后放电比容量仍然可以达到941 mAh/g,而循环100次后纯SnS_(2)的放电比容量远低于SnS_(2)/RGO复合材料,仅为198 m Ah/g,表现出良好的循环稳定性。1 000 m A/g的高电流密度下,SnS_(2)/RGO复合材料放电比容量依然可以达到696 mAh/g,表现出良好的倍率性能。