为提高温室番茄穴盘苗补苗移栽的工作效率,对补苗移栽路径进行规划,以减少路径规划长度和运算时间,提高机械手补苗效率和缩短反应时间。提出一种基于改进蚁群算法(Improved ant colony optimization)的机械臂补苗移栽路径规划方法,首先...为提高温室番茄穴盘苗补苗移栽的工作效率,对补苗移栽路径进行规划,以减少路径规划长度和运算时间,提高机械手补苗效率和缩短反应时间。提出一种基于改进蚁群算法(Improved ant colony optimization)的机械臂补苗移栽路径规划方法,首先,采用多因素启发函数,在启发函数中加入角度因子,增强路径的全局规划性;其次,为解决传统蚁群算法收敛速度慢的问题,引入了自适应挥发系数和动态权重系数;最后针对补苗路径规划背景下信息素复杂无序的问题,在信息素更新下加入边缘距离因子并设置信息素阈值,目的是减少路径规划时间,加快算法收敛。仿真结果表明,相比于传统优化算法,改进蚁群算法能有效优化补苗移栽路径。在试验条件128孔穴盘下,该模型的路径规划长度相比固定顺序法缩短14.65%,相比蚁群算法缩短6.76%,相比遗传算法缩短3.68%,相比克隆选择算法缩短1.01%。对比可知,改进蚁群算法更有利于补苗移栽路径规划,该模型可作为温室穴盘苗机械化补栽路径规划算法控制基础。展开更多
文摘为提高温室番茄穴盘苗补苗移栽的工作效率,对补苗移栽路径进行规划,以减少路径规划长度和运算时间,提高机械手补苗效率和缩短反应时间。提出一种基于改进蚁群算法(Improved ant colony optimization)的机械臂补苗移栽路径规划方法,首先,采用多因素启发函数,在启发函数中加入角度因子,增强路径的全局规划性;其次,为解决传统蚁群算法收敛速度慢的问题,引入了自适应挥发系数和动态权重系数;最后针对补苗路径规划背景下信息素复杂无序的问题,在信息素更新下加入边缘距离因子并设置信息素阈值,目的是减少路径规划时间,加快算法收敛。仿真结果表明,相比于传统优化算法,改进蚁群算法能有效优化补苗移栽路径。在试验条件128孔穴盘下,该模型的路径规划长度相比固定顺序法缩短14.65%,相比蚁群算法缩短6.76%,相比遗传算法缩短3.68%,相比克隆选择算法缩短1.01%。对比可知,改进蚁群算法更有利于补苗移栽路径规划,该模型可作为温室穴盘苗机械化补栽路径规划算法控制基础。