当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种...当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种针对电力设备缺陷文本的数据增强方法。首先,使用缺陷文本数据集微调预训练模型ERNIE(enhanced representation through knowledge integration),应用多阶段知识掩码策略将电气领域专业知识集成到对缺陷文本的动态编码中;然后在流形假设的基础上基于降噪自动编码器架构设计破坏函数和重建函数,遵循基于信息价值的掩码单元选择策略构建破坏函数,基于微调过的ERNIE构建重建函数,在“破坏-重建”过程中获得位于原始数据流形范围内的增强样本;其次对增强数据集基于影响函数和多样性度量进行数据选择,过滤掉数据质量差和重复度高的增强样本;最后通过多层训练框架,将增强数据应用于各种缺陷文本挖掘任务。算例基于真实设备巡检、检修记录构建了电力设备缺陷文本等级分类任务。结果表明,所提出的算法对缺陷文本挖掘效果有较大提升,并且可以广泛灵活地应用在多种电力设备缺陷文本挖掘任务中。展开更多
在电力巡检过程中,无人机等边端智能检测设备往往面临输电线路绝缘子缺陷目标小、背景因素复杂等难点,且边端设备的硬件条件限制了模型的规模,导致设备算力有限,模型准确率偏低。针对上述问题,该文提出了一种基于YOLOv8-RFL(You only lo...在电力巡检过程中,无人机等边端智能检测设备往往面临输电线路绝缘子缺陷目标小、背景因素复杂等难点,且边端设备的硬件条件限制了模型的规模,导致设备算力有限,模型准确率偏低。针对上述问题,该文提出了一种基于YOLOv8-RFL(You only look once version 8-RFL)模型的输电线路绝缘子缺陷检测方法。首先,通过对原有主干网络C2f(CSPDarknet53 to 2-Stage FPN)模块进行改进,增强模型对于绝缘子缺陷的特征提取能力;其次,构建基于特征聚焦的泛化特征金字塔网络(focusing generalized feature pyramid networks,FGFPN),采用“特征聚焦-扩散”的思想,精细化小缺陷目标的特征表达;然后,设计基于交叉注意机制的特征语义融合模块(feature semantic fusion module,FSFM),优化了对关键特征信息的捕获和利用;最后,提出轻量化权重共享检测头(Lightweight weight sharing detection head,LWSD),在保证检测精度的同时提高模型的计算效率和实时性。实验表明,改进后的YOLOv8-RFL模型均值平均精度(mean average precision,mAP)达到了93.2%,相较于基准模型提升了5.9%,在降低模型参数量和所需计算量的同时,实现了更好的绝缘子小目标缺陷检测效果,对于复杂背景下的输电线路绝缘子缺陷检测具有一定的现实意义。展开更多
文摘当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种针对电力设备缺陷文本的数据增强方法。首先,使用缺陷文本数据集微调预训练模型ERNIE(enhanced representation through knowledge integration),应用多阶段知识掩码策略将电气领域专业知识集成到对缺陷文本的动态编码中;然后在流形假设的基础上基于降噪自动编码器架构设计破坏函数和重建函数,遵循基于信息价值的掩码单元选择策略构建破坏函数,基于微调过的ERNIE构建重建函数,在“破坏-重建”过程中获得位于原始数据流形范围内的增强样本;其次对增强数据集基于影响函数和多样性度量进行数据选择,过滤掉数据质量差和重复度高的增强样本;最后通过多层训练框架,将增强数据应用于各种缺陷文本挖掘任务。算例基于真实设备巡检、检修记录构建了电力设备缺陷文本等级分类任务。结果表明,所提出的算法对缺陷文本挖掘效果有较大提升,并且可以广泛灵活地应用在多种电力设备缺陷文本挖掘任务中。
文摘在电力巡检过程中,无人机等边端智能检测设备往往面临输电线路绝缘子缺陷目标小、背景因素复杂等难点,且边端设备的硬件条件限制了模型的规模,导致设备算力有限,模型准确率偏低。针对上述问题,该文提出了一种基于YOLOv8-RFL(You only look once version 8-RFL)模型的输电线路绝缘子缺陷检测方法。首先,通过对原有主干网络C2f(CSPDarknet53 to 2-Stage FPN)模块进行改进,增强模型对于绝缘子缺陷的特征提取能力;其次,构建基于特征聚焦的泛化特征金字塔网络(focusing generalized feature pyramid networks,FGFPN),采用“特征聚焦-扩散”的思想,精细化小缺陷目标的特征表达;然后,设计基于交叉注意机制的特征语义融合模块(feature semantic fusion module,FSFM),优化了对关键特征信息的捕获和利用;最后,提出轻量化权重共享检测头(Lightweight weight sharing detection head,LWSD),在保证检测精度的同时提高模型的计算效率和实时性。实验表明,改进后的YOLOv8-RFL模型均值平均精度(mean average precision,mAP)达到了93.2%,相较于基准模型提升了5.9%,在降低模型参数量和所需计算量的同时,实现了更好的绝缘子小目标缺陷检测效果,对于复杂背景下的输电线路绝缘子缺陷检测具有一定的现实意义。