期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进DBNet和SVTR算法的连铸板坯号检测与识别 被引量:2
1
作者 刘乐 张晓松 +1 位作者 黄锋 方一鸣 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期67-75,共9页
针对钢铁连铸产线板坯号识别字符区域小、光照变化复杂、板坯号图像质量差等问题,提出了一种基于深度学习的连铸板坯号检测与识别两阶段算法。首先,基于采集的连铸产线板坯图像,制备用于板坯号检测与识别的数据集;其次,在板坯号检测阶段... 针对钢铁连铸产线板坯号识别字符区域小、光照变化复杂、板坯号图像质量差等问题,提出了一种基于深度学习的连铸板坯号检测与识别两阶段算法。首先,基于采集的连铸产线板坯图像,制备用于板坯号检测与识别的数据集;其次,在板坯号检测阶段,基于DBNet算法设计一种AD-PAN特征融合结构,以增强检测算法的多尺度特征融合能力和扩大感受野,提高板坯号定位精度;再次,在板坯号识别阶段,引入SPIN矫正网络和SVTR板坯号识别网络进行端到端训练,使其能够主动转换输入亮度,并改善字符间以及字符与背景间色彩失真的问题。最后,在自制的板坯号检测与识别数据集上进行了对比实验。实验结果表明,本研究提出的算法能够有效定位辊道上不同位置的板坯,并且在复杂背景下对板坯号进行鲁棒识别。其中,板坯号检测Hmean数值为97.92%,板坯号识别的准确率为97.33%,验证了本文所提算法具有较高的板坯号检测与识别精度。 展开更多
关键词 板坯号识别 DBNet 特征金字塔融合 端到端网络 SPIN矫正 SVTR
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部